По воскресеньям утром коровам полагалось давать соль — угощение, которое им очень нравилось. По истечении какого-то времени, какого — точно сказать не могу, они уже каждое воскресное утро стояли у ограды выгона, в самом близком к жилью месте, и ждали. Если я забывал дать им соль, коровы не уходили пастись и могли стоять так больше часа.

Таким образом, коровы самостоятельно приходили на место дойки по воскресеньям, но не приходили в остальные дни. Как они могли это делать, если не обладали какой-то способностью отмечать каждые семь дней недели? Они были изолированы от окружающего мира и изо дня в день не видели никого, кроме меня. Насколько можно судить, все дни должны были казаться им одинаковыми, за исключением воскресенья, которое, имей коровы способность говорить, они называли бы «соленым» днем. Как они сумели уловить периодичность и быть на месте именно в это, а не в другое утро?

Павиан чакма, который в течение двадцати лет жил в Вашингтонском национальном зоопарке, сам себе установил рабочее время и соблюдал его с точностью до минуты. Ежедневно ровно в четыре часа дня он начинал почесывать свою черновато-зеленую шкурку, удалялся, ковыляя, в свой домик и закрывал за собой дверь. Если кому-либо из опоздавших хотелось его повидать, они должны были прийти на следующий день.

Итак, это всего несколько листков из записных книжек натуралистов. Но эти записи пробудили любознательность биологов XX века, подтолкнули их к выдвижению новых концепций, которые можно было проверить с помощью таких современных средств, как электронные вычислительные машины, радары, сканирующий электронный микроскоп. Многие наблюдения были выполнены людьми, не имевшими специального образования. Признанный авторитет в области изучения биологических ритмов Колин Питтендрай сказал: «Я не знаю ни одного другого случая, когда простое наблюдение столь непосредственно привело бы к формулированию первоочередных проблем, стоящих перед современным ученым, изучающим физиологию клетки».

В последующих главах мы увидим, как бьются физиологи над некоторыми из проблем, которые имел в виду Питтендрай. Но прежде мы проследим за ходом развития научной мысли от раннего периода — периода простых наблюдений и предположений до современного состояния науки со всей изощренностью ее стратегии и тактики.

3. От Демэрана до Аррениуса

Нам, свидетелям космических полетов, по-видимому, трудно так сузить свое восприятие мира, чтобы посмотреть на окружающее глазами ученых восемнадцатого столетия. Но давайте все-таки попытаемся взглянуть на историю развития проблемы биологических часов ретроспективно.

Представьте себе Париж 1729 года. Приезжий легко мог бы заблудиться в нем — названий улиц практически не было, лишь немногие обозначения выбивались на фасадах угловых зданий. Для натуралистов же надежных путеводных знаков в те времена было еще меньше. Прошло всего несколько десятилетий с тех пор, как Исаак Ньютон открыл закон всемирного тяготения, а Пьер Лаплас, которого называли «французским Ньютоном», еще даже не родился. Теория флогистона (утверждавшая, что во всех веществах, способных гореть с выделением пламени или превращаться при обжигании в окалину, имеется некое горючее начало — флогистон) была камнем преткновения на пути развития химии. Минует еще четверть столетия, прежде чем Вениамин Франклин получит разряд статического электричества от бечевы, на которой запущен воздушный змей, показав тем самым, что молния — это всего лишь явление природы, а не устрашающее свидетельство божьего гнева. Лабораторное оборудование было крайне примитивным, в медицине даже стетоскопу предстояло появиться только через столетие. Тем не менее к 1729 году эпоха Просвещения уже расчистила пути, позволившие ученым применять в своих исследованиях экспериментальные методы.

Таково вкратце положение вещей, которое сложилось к моменту спора между французским астрономом Жан-Жаком де Мэраном и его другом Маршаном. А разгорелся этот спор из-за одной научной публикации. Маршан настаивал на том, чтобы де Мэран написал в Парижскую академию о своем открытии: он обнаружил у чувствительного растения движение листьев, которое соответствовало периодам «сна и бодрствования». Однако, погруженный в исследование таких проблем, как природа северного сияния и взаимосвязь цветов радуги, возникающей при разложении призмой солнечного луча, занятый изучением суточного вращения Земли и анализом наблюдений полного затмения солнца 1706 года, ученый не желал тратить драгоценное время на описание того, как спит растение! Но, настроенный решительно, Маршан счел своим прямым долгом сообщить научному миру Франции о наблюдениях де Мэрана. По его мнению, они были первым доказательством того, что растение может определять положение солнца на небосводе даже тогда, когда не подвергается прямому действию его лучей. В Академии — а Маршан был одним из ее членов — было принято сообщать о работах других ученых. Вот вольный перевод его сообщения.

Общеизвестно, что наиболее чувствительные из гелиотропов поворачивают свои листья и стебли в направлении максимальной интенсивности освещения[1]. Это свойство присуще и многим другим растениям, однако гелиотроп обладает особой чувствительностью к солнечному свету (или времени дня): его листья и стебли с заходом солнца опускаются; то же самое происходит с растением, если к нему прикоснуться или встряхнуть.

Однако де Мэран обратил внимание на то, что растение ведет себя подобным образом и в случае, если оно находится не на открытом воздухе, а постоянно содержится в темном помещении. Растение также раскрывается на день и складывается на ночь. Эксперимент проводился в конце лета. Чувствительное растение реагировало на положение солнца, даже будучи совершенно изолированным от него.

Рис. 6. Растение, наблюдавшееся де Мэраном, «просыпалось» с рассветом, даже если содержалось в полной темноте. Крупным планом показано положение листьев «спящего» растения.

В заключение своего письма Маршан призывал ботаников и врачей исследовать это явление, заметив, однако, что «прогресс настоящей естественной философии, которая связана с экспериментальной работой, может быть удручающе медленным». Но ни ботаники, ни врачи не откликнулись на его призыв. И только через тридцать лет во Франции появился человек, который подтвердил открытие де Мэрана и продолжил его исследования.

В темном сундуке Дюамеля

Этим человеком оказался Генри-Луи Дюамель, который большую часть времени, потраченного на образование, скучал и сокрушался. В первые годы своего пребывания в колледже он менее всего обещал стать тем, кого впоследствии именовали «инспектором Академии наук, членом Лондонского королевского общества, почетным членом академии в Санкт-Петербурге, Стокгольме, Палермо и Падуе, института в Болонье, Королевского общества в Эдинбурге, сельскохозяйственных обществ Парижа и Лейдена и добровольным членом Королевского медицинского общества».

Дюамель родился в Париже в 1700 году. Его предки были родовитыми голландцами, перебравшимися во Францию еще в 1400 году. Хотя Генри-Луи и отличался пытливым складом ума, посещать лекции по естественной истории он начал совершенно случайно и то лишь в конце своего пребывания в колледже. Увлечение естественными науками вспыхнуло в нем совершенно неожиданно. Чтобы отдавать занятиям все свое время, он даже переселился поближе к колледжу.

Но именно тогда, когда юный Дюамель с головой ушел в свое новое увлечение, родители потребовали, чтобы он изучал право. Генри-Луи согласился посещать школу права в Орлеане. На право он потратил ровно столько времени, сколько было необходимо для получения ученой степени, которой он так никогда и не воспользовался. Выполнив свое обязательство перед родителями, Генри-Луи возвращается в

Вы читаете Живые часы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату