расходуется на разрыв слабых связей. При разрыве пептидных и дисульфидных связей размеры молекулы белка уменьшаются. В ходе данного процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, из аминокислоты гистидина после отделения группировки — СОО— образуется гистамин — вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Образование гистамина, по-видимому, играет важную роль в действии ультрафиолетовых лучей на организм.

Кроме фотолиза в биополимерах под действием ультрафиолетовых лучей происходят и другие изменения. Обычно молекулы белка имеют одинаковый электрический заряд. При облучении заряд молекул уменьшается, они легко слипаются, выпадают в осадок, теряют свою активность — ферментную, гормональную, антигенную и др. Все эти сдвиги, вместе взятые, носят название денатурации.

Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются ультрафиолетовыми лучами разной длины волны: лучи 2800—3020 А вызывают главным образом фотолиз, лучи 2500—2650 А — преимущественно денатурацию. Различное сочетание этих процессов определяет картину действия на организм ультрафиолетовых лучей.

Самая чувствительная к действию ультрафиолетовых лучей функция клетки — деление. Лучи в дозе 10 эрг/мм2 уже вызывают остановку деления примерно 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращаются. Со временем восстанавливается и деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, нужно довести дозу излучения до 100 эрг/мм2.

На рис. 16 видно, что кривые бактерицидного и генетического действия ультрафиолетовых лучей, их влияния на рост и деление клеток очень сходны между собой и почти совпадают с кривой поглощения лучей нуклеиновыми кислотами. Значит, ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют и на рост, и на деление, и на наследственность клеток, и на их существование, т. е. на основные проявления жизнедеятельности клеток. Как известно, действуют на организм, клетку, вещество только то излучение, только те фотоны света, которые поглощаются этим веществом (клеткой, организмом). А нуклеиновые кислоты поглощают кванты невидимого ультрафиолетового излучения гораздо сильнее, чем белки, даже в области максимума адсорбции света белками (около 2800 А). Не удивительно, что именно в нуклеиновых кислотах происходят наиболее важные процессы, характеризующие биологическое действие ультрафиолетовых лучей.

Значение нуклеинового компонента в механизме действия этих лучей на организм объясняется особой ролью нуклеиновых кислот в клетке. Если любой белок присутствует в клетке в виде десятков и сотен совершенно одинаковых молекул, то каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК — это наследственная память клетки. В структуре ее молекул зашифрована информация о строении и свойствах всех клеточных белков, а значит — об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Понятно, что нарушения структуры молекул ДНК особенно важны, особенно опасны, выход из строя любого участка «наследственной» молекулы может оказаться непоправимым или привести к серьезному нарушению жизнедеятельности.

Рис. 16. Кривые поглощения ультрафиолетовых лучей нуклеиновыми кислотами (1), торможения клеточного деления (2) и мутагенного действия ультрафиолетовых лучей (3)

Итак, повреждение ДНК — главное в механизме действия ультрафиолетовых лучей. Но какова природа этих изменений? Мы уже знаем, что поглощают ультрафиолет циклические структуры азотистых оснований, входящих в состав ДНК. Если основную цепочку — нить этой молекулы, самой большой в органическом мире (молекулярный вес ДНК достигает 12—30 млн.), образуют чередующиеся группировки сахара-дезоксирибозы и фосфорной кислоты, то азотистые основания присоединены к каждому звену этой цепи, образуя как бы ступеньки лестницы. Молекула ДНК состоит из двух нитей, спирально закрученных друг возле друга. Лестница, таким образом, витая. А ступеньки ее — это пары азотистых оснований. Они-то и связывают нити ДНК непрочными, но зато многочисленными водородными связями. При самоудвоении ДНК (а именно с него начинается деление клетки) водородные связи разрываются, и каждая из двух нитей ДНК достраивает недостающую часть.

Квант ультрафиолетового излучения приносит с собой столь значительный запас энергии, что прежняя структура азотистого основания становится «тесной» для него. Обычно избыток энергии расходуется на разрыв двойной связи в наиболее слабом месте молекулы — между 5 и 6 атомами углерода в тимине. В результате образуются две свободные валентности, которые нуждаются в заполнении. Чаще всего разорванная двойная связь восстанавливается. Но если разрыв произойдет одновременно в двух расположенных по соседству азотистых основаниях — валентные связи могут замкнуться не внутри оснований, а между ними. И тогда возникает димер тимина — основной фотопродукт облучения ДНК. Если уподобить двойную спираль ДНК застежке-молнии, то каждый димер будет соответствовать слившимся зубцам застежки, препятствующим расхождению нитей. В результате нарушается процесс удвоения ДНК, а затем и деление клеток. С увеличением дозы облучения растет количество димеров, а с ним и нарушения жизнедеятельности, которые на определенном уровне становятся несовместимыми с жизнью. Наряду с образованием димеров определенное значение имеет и окислительное разрушение, дезаминиро-вание азотистых оснований, например превращение аде-нина в гипоксантин под влиянием ультрафиолета, что также искажает смысл наследственной информации.

В отличие от других физических и химических агентов ультрафиолетовые лучи даже в больших дозах не убивают облученную клетку сразу. Обычно клетка на некоторое время (на 1—2 суток) теряет способность к делению. Затем наступает мнимое выздоровление, и клетка успевает 2—4 раза разделиться, прежде чем наступает окончательная гибель.

Процесс образования димеров (тимина, а также цитозина, димеров тимин-цитозин) лежит в основе не только задержки роста и деления, не только гибели клеток, но и мутагенного, генетического действия. Возникновение прочных валентных связей между азотистыми основаниями нарушает генетический код, искажает смысл наследственной информации. Ведь наследственный язык клетки — четырехбуквенный, именно азотистые основания — его буквы. Точнее, тройка (триплет) азотистых оснований — простейшая единица генетического кода. Если прочная связь возникает (благодаря энергии ультрафиолета) между соседними тиминами в пределах одной нити ДНК, то процесс самоудвоения ДНК и деления клетки не нарушается. Зато дочерние клетки получат по наследству шифровку с опечатками — их жизненная программа будет запутана, опасные абракадабры могут послужить и причиной смерти где-то через 2—3 поколения, либо жизнедеятельность клетки окажется серьезно нарушенной. Так атомно-молекулярные перегруппировки, ставшие возможными благодаря избыточной энергии квантов ультрафиолетовых лучей, сами становятся причиной нарушения жизни клеток, тканей, органов, всего организма.

Процесс, начавшийся с поглощения фотонов ультрафиолетовых лучей биополимерами, по мере своего развития приводит к таким знакомым всем сдвигам в организме, как покраснение кожи (эритема), ее потемнение (загар, пигментация), антирахитическое, обеззараживающее действие и др.

Действие ультрафиолетовых лучей на кожу

Жаркий летний день, яркое Солнце, безоблачное синее небо, берег реки. Вы лежите, подставив Солнцу свое тело. Проходят минуты блаженного полузабытья; ласкающие прикосновения солнечных лучей расслабляют мышцы, снимают ощущение усталости. Нагретые Солнцем участки кожи становятся розоватыми, горячими на ощупь. Это покраснение (калорическая эритема) появляется в результате нагрева кожи видимыми и инфракрасными лучами Солнца и прилива к ней крови. Оно исчезает почти сразу же после прекращения солнечной ванны.

Однако через 2—8 ч снова появляется покраснение кожи вместе с ощущением жжения. Это уже ультрафиолетовая эритема, отличающаяся от калорической некоторыми особенностями. Появляется она после скрытого периода, в пределах облученного участка кожи и сменяется загаром и шелушением.

Вы читаете Солнечный луч
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату