электрода. Выбитые из пластинки электроны отталкивались отрицательным электродом. Своим действием этот электрод заставлял электроны вернуться в металл, из которого они вылетели.
Получил истолкование открытый Столетовым закон, устанавливающий зависимость между величиной фототока и степенью разреженности газа, находящегося между электродами. Летящие электроны сталкиваются с молекулами газа, при этих соударениях от молекул газа отщепляются новые электроны. Эти электроны также начинают принимать участие в полете электронного роя, в создании электрического тока. При некотором давлении, величину которого устанавливает закон Столетова, электроны разбивают наибольшее количество молекул, фотоэлектрический ток достигает максимума. Явление усиления фототока, открытое Столетовым, широко используется в современных фотоэлементах.
Стал ясным смысл и основного закона фотоэффекта, также установленного Столетовым, закона прямой пропорциональности между интенсивностью света и силой фототока. Естественно, что чем сильнее свет, тем больше электронов выбьет он, падая на поверхность металла.
Нашло объяснение и явление насыщения фотоэлектрического тока, впервые обнаруженное Столетовым. По мере увеличения напряжения между электродами от катода к аноду переносится все больше и больше электронов. Ток с увеличением напряжения растет. Но он не может расти беспредельно. После того как все вылетевшие под действием света электроны включаются в движение, фототок не может возрасти даже и при увеличении напряжения между электродами. Наступает «насыщение» фототока. Ток теперь можно увеличить, лишь увеличив силу света, увеличив число выбиваемых электронов.
Объяснить все эти закономерности, найденные Столетовым, смогла и волновая теория света.
Но явление фотоэффекта, так подробно, так глубоко изученное Столетовым, поставило перед физикой и целый ряд загадок, которые волновая теория оказалась не способна разрешить.
Электронам, чтобы вырваться из металла, нужно совершить некоторую работу, нужно иметь некоторый запас энергии. Эту энергию им сообщает свет. Свет сообщает энергию электронам постепенно, говорит волновая теория. Волна за волной набегает на освещаемую пластинку. Световые волны постепенно расшатывают электроны, сидящие в пластинке. Когда электроны накопят достаточно энергии, они станут покидать пластинку. Возникнет электрический ток.
Когда же он возникнет?
Расчеты, основанные на предположении, что свет имеет волновую природу, говорят, что даже очень сильный свет породит фототок лишь после того, как электрод освещался в продолжение нескольких часов. Но опыт показывает иное. Столетов установил, что фототок возникает мгновенно. Луч света действует, как выстрел. Тотчас же после удара в пластинку светового луча из нее вылетает рой электронов. Волновая теория бессильна объяснить это явление.
Есть и еще одна необъяснимая с точки зрения волновой теории загадка фотоэффекта.
Почему даже очень сильный, но длинноволновый свет не может вырвать электроны из металла, не порождает фотоэлектрического тока, в то время как фототок мгновенно возникает при освещении фотокатода светом коротковолновым? Как бы ни была мала интенсивность луча коротковолнового света, фототок возникает. Пусть очень слабый, почти неуловимый, но он все же возникает, электроны вырываются из металла.
Существует как бы некий порог фотоэффекта. Ток возникает, как установил Столетов, лишь тогда, когда длина волны света достаточно коротка. Этот порог для разных веществ различен. Одни металлы отзываются рождением фотоэлектрического тока уже на зеленый свет, для других нужен свет более коротковолновый, скажем — синий. Некоторые металлы, как, например, цинк, которым чаще всего пользовался Столетов, выбрасывают свои электроны только под ударами ультрафиолетовых лучей.
С точки зрения волновой теории явление порога фотоэффекта совершенно необъяснимо. Сильный свет, вне зависимости от длины его волны, должен был бы и действовать сильнее. Ведь он несет большую энергию, говорит эта теория. Был бы свет только необходимой мощности, и этого достаточно, чтобы вызвать фототок, утверждает теория. Но опыт говорит обратное.
А вот и еще одна загадка. Измерив скорость электронов, выбитых светом из металла, физики убедились, что эта скорость совершенно не зависит от силы света. Этот факт тоже находится в разительном противоречии с теми следствиями, которые вытекают из волновой теории света. Чем сильнее свет, говорит волновая теория, тем, очевидно, и больше энергия, сообщаемая каждому электрону металла, а следовательно, тем с большей скоростью они должны вылетать. Но опыт показывает другое: скорость электронов зависит только от длины волны света, мощность же, сила света на скорость электронов совершенно не влияют. Если этот свет имеет небольшую интенсивность, то электронов вылетит мало, но все эти электроны будут лететь с большой скоростью. Длинноволновый же свет, даже очень сильный, породить быстрых электронов не может. Этот свет выбьет из металла мириады электронов, но каждый электрон будет лететь медленно.
Осмысление наблюдаемых при фотоэффекте явлений привело к колоссальным последствиям. Оно помогло утвердиться совершенно новым воззрениям на природу света. В физике произошел революционный переворот.
Объяснить эти закономерности фотоэффекта можно, только если рассматривать свет как поток неких особых частиц. Этим частицам света физики дали названия квантов света, или фотонов. Свет различной светности состоит из различных фотонов. Более коротковолновому свету соответствуют более крупные, более мощные фотоны. Чем длиннее волна света, тем меньшие частицы, тем меньшие фотоны соответствуют этому свету.
Фотоны красного и инфракрасного света по сравнению с фотонами ультрафиолетовых и рентгеновских лучей находятся примерно в таком же соотношении, как мелкая дробь с артиллерийскими снарядами.
Квантовая теория света, родившаяся в начале XX века, великолепно объясняет все особенности фотоэффекта.
Освещение пластинки металла светом напоминает, если стоять на точке зрения этой теории, обстрел этой пластинки стремительно летящими фотонами. Сталкиваясь с электроном, фотон мгновенно передает ему свою энергию, мгновенно выбивает электрон из металла. Ясно, что если обстрел идет мелкими фотонами, пластинка освещается длинноволновым светом, то может статься, что энергии фотона и нехватит для того, чтобы выбить из металла электрон, в который он попадает. Такой свет не может породить тока, хотя бы его интенсивность и была очень велика, то-есть в обстреле участвовали бы мириады фотонов. Чтобы ток возник, фотоны должны быть достаточно крупными — длина волны света достаточно короткой. При соблюдении этого условия ток возникнет и тогда, когда свет будет слабым. Фотонов будет в этом случае немного, но каждый из них все же выбьет по электрону, и ток появится.
Так просто с точки зрения квантовой теории объясняется явление порога фотоэффекта и то, почему фототок возникает мгновенно.
Квантовая теория дает объяснение и тому, отчего электроны, выбитые различным светом, имеют и различную скорость. Чем крупнее фотон, тем с большей скоростью вылетит выбитый им из металла электрон.
Наглядно объясняет квантовая теория и главный закон фотоэффекта, установленный Столетовым: чем больше интенсивность света, тем больше фотонов падает на электрод.
Залп большего числа фотонов выбьет и больше электронов, ток будет пропорционален интенсивности света.
Квантовая теория открыла в физике новую замечательную эпоху, завоевала себе широкий мир применения. Но свет обладает двойственной природой — и корпускулярной и волновой. Поэтому квантовая теория не упразднила волновую теорию, она сосуществует рядом с нею. Целый ряд физических явлений может быть объяснен только с точки зрения волновой теории, в частности такие явления, как спектральное разложение света, преломление света, интерференция и т. д.
Но есть обширный круг явлений, куда волновая теория не вхожа, — это фотоэффект, это явление излучения энергии нагретыми телами и т. д.
Квантовая теория распространила свое влияние и на атомную физику. Она стала вместе с электронной теорией, также во многом обязанной своим рождением освоению наследства Столетова, тончайшим орудием исследования мира сверхмельчайшего, мира атомов, электронов, протонов, фотонов и т. д.
Новая физика, когда-то носившая отвлеченный теоретический характер, на наших глазах воплотилась во многие удивительные приборы.