линии отмечают границы интервалов, а промежутки между точками заняты какой-то разновидностью пустоты или пространства3.
Отсутствие согласия по поводу конкретных деталей означало, что Зенон должен был рассмотреть четыре возможных случая, чтобы показать, что
Четыре возможных у пифагорейцев способа описать движение объединяются в две группы: либо (1) сегменты пространства и части времени не похожи друг на друга, либо (2) они похожи. Если (1) они не похожи, то либо (1a) каждый момент времени имеет определенную протяженность, а сегменты пространства ее не имеют, либо (1b) дело обстоит наоборот: точки имеют конечную длину, а моменты времени не имеют длительности. Если (2) время и пространство подобны одно другому, то либо (2a) элементы и того и другого не имеют никакой протяженности, либо (2b) элементы и того и другого имеют какую-то минимальную конечную длину [то есть либо T = 1, S = 1, либо T = 0, S = 0]5.
Именно эти четыре возможности и рассмотрены по порядку в четырех парадоксах движения. Зримо представить это в компактной форме вам может помочь таблица:
Для начала вернемся к задаче «Деление на два» и обратим внимание на то, что в этой головоломке предполагается, что пространство между вами и ведущей наружу дверью можно делить бесконечно. И для Зенона, и для Пифагора это означало, что пространственные точки не имеют длины. В то же время, когда Зенон сказал: «Чтобы пройти через каждую точку пространства, нужно какое-то время», он предполагал, что у моментов времени есть какая-то «длина» и поэтому, если сложить бесконечное количество моментов, в сумме получится бесконечное время. Это противоречие происходит оттого, что к
В парадоксе об Ахилле делается противоположное допущение. Когда Зенон заявляет, что Ахилл
В парадоксе о стреле допущения достаточно простые и очевидные: если ни моменты времени, ни сегменты пространства не имеют совершенно никакой протяженности, отношение расстояние к времени всегда будет 0/0, а это выражение не имеет смысла. Причина того, что задача о стреле создает такие фундаментальные трудности, состоит в том, что мы часто хотим разрезать пространство и время на отдельные фрагменты, как на куски. Целая длинная и интересная глава в истории математики заполнена попытками, используя различные стратегии, опять сложить из этих фрагментов непрерывное целое.
И наконец, в четвертой задаче с движением колесниц относительно друг друга предполагается, что точки пространства и моменты времени имеют определенную протяженность, но она минимальна, и поэтому они
Четырьмя парадоксами Зенон очень хорошо достигает того, чего хотел. Он логически строго показывает, что в пифагорейских представлениях о движении, пространстве и времени что-то неверно. Эти демонстрационные примеры Зенона не убедили более поздних мыслителей принять выводы Парменида, однако заставили этих мыслителей проникнуться уважением к формальной логике и увидеть новые возможности ее применения. Еще они, естественно, заставили их попытаться сформулировать пифагорейские понятия по-новому, таким образом, чтобы исключить показанные Зеноном противоречия. Эти попытки имели много форм: у Анаксагора – отказ от представления об отдельных точках и замена их непрерывной последовательностью, у Аристотеля – полное отделение арифметики от геометрии, а в атомистической теории – лежащее в ее основе четкое разграничение физической и математической «делимости»8.
Эмпедокл
Слишком много воображения
Головы без тел, Торсы без конечностей Падали в воздухе с огромной высоты.
Как писал Уайтхед, одна из важнейших человеческих потребностей – жажда приключений. Знакомство с чужим сознанием, которое настолько сильно отличается от твоего собственного, что эта разница побуждает твой ум работать, – смягченный вариант того же самого. Уайтхед ничего не говорит о встрече с кем-то настолько же не похожим на нас, как «свалившийся с Марса» человек из поговорки, но я полагаю, что он посчитал бы такую встречу огромной удачей из-за новых возможностей в поведении и мышлении, которые открылись бы нам благодаря такому существу. Древнегреческий врач Эмпедокл, который жил в Агригенте около 440 года до н. э., поражает меня тем, что он во многих отношениях далек, словно марсианин, от нашего современного мира. Он настолько не похож на нас, что ученым оказалось трудно поверить в его существование и тем более оценить его по достоинству. Может быть, лишь поэты пару раз подошли к нему ближе, чем остальные. Мэтью Арнольд написал поэму