С помощью таких эмульсий Жан Перрен произвел множество замечательных опытов, о которых мы здесь и расскажем. Он поместил каплю эмульсии с определенным диаметром зерен в плоскую ванночку (кюветку) с глубиной 0,1 мм. Кюветка была вслед за тем покрыта тонким покровным стеклышком, края которого были залиты парафином: таким образом капля оказалась размазанной в сосуде, в котором она герметически заперта, так что никакое испарение уже невозможно.
Перрен сперва поставил свою кюветку на бок и стал смотреть на нее в микроскоп. В поле зрения микроскопа оказалась тонкая вертикальная водяная стенка, внутри которой распределились зернышки гуммигута.
Рис. 3. Распределение зернышек гуммигута по высоте: а) рисунок воспроизводит фотографию, полученную Перреном в его лаборатории;
Рис. 3. Распределение зернышек гуммигута по высоте: б) рисунок составлен из пяти наложенных друг на друга фотографических снимков.
Распределение зернышек сперва было однородным (это произошло, как потом выяснилось, вследствие неизбежного встряхивания препарата при его установке под микроскоп), но потом, с течением времени, распределение изменилось и в конце концов стало таким: очень много зернышек внизу, а по мере продвижения вверх их становится все меньше и меньше. Число зернышек в одном кубическом микроне уменьшается с увеличением высоты, и притом по некоторому вполне определенному закону.
Этот закон уменьшения плотности эмульсии с высотой Перрен захотел исследовать. Для этого он положил кюветку на донышко и стал смотреть на нее сверху в микроскоп, имевший очень маленькую глубину поля зрения: в .микроскоп было видно все, что происходит в тонком слое глубиной в один микрон. Передвигая микроскоп вверх и вниз, можно было смещать этот слой то выше, то ниже. Перрен стал работать так: поставил микроскоп на какой-то высоте и начал считать, сколько зернышек виднеется в поле зрения па этой высоте, затем передвинул микроскоп на новую высоту и снова сосчитал число зернышек и т. д. Заметим, что при этом числом зернышек считается среднее из нескольких наблюдений, потому что зернышки движутся совершенно хаотически и, следовательно, их число в поле зрения микроскопа бывает то больше, то меньше, в зависимости от случая. Поэтому на одной и той же высоте Перрен производил подсчет зернышек много раз и затем уже определял среднее значение, характерное для каждой такой высоты.
Казалось бы, можно было производить под микроскопом моментальные фотографические снимки, а затем уже на досуге спокойно сосчитать, сколько имеется зернышек в поле зрения на данной высоте. Но моментальные фотографические снимки в этих условиях плохо получаются, потому что не удается осветить зернышки достаточно ярко (Перрену удавалось получать моментальные снимки в случае частиц с диаметром больше чем 0,5 микрона, для меньших же частиц фотографии получались чересчур не отчетливые.) Поэтому Перрену пришлось сильно сузить поле зрения микроскопа, помещая между микроскопом и препаратом кружочек фольги, проколотый иголкой: в микроскоп было видно только то, что происходило на площади, равной отверстию, сделанному иголкой. Препарат освещался очень короткое время - для этого на пути лучей, освещавших препарат, ставился фотографический затвор,- и каждый раз в поле зрения было видно сравнительно небольшое число зернышек: не больше пяти. Для этого-то и должен был Перрен сузить поле зрения микроскопа: если бы каждый раз в поле зрения получалось много частиц, то наблюдатель никак не успевал бы их сосчитать. Сосчитать же зернышки, если их число не превышает пяти, легко. Зато приходилось компенсировать это уменьшение поля зрения тем, что в одном таком поле зрения делалось очень много отсчетов, и затем уже из полученных результатов вычислялось среднее арифметическое.
Приведем результаты одного из опытов Перрена. Глубина кюветки была, как мы уже говорили, 100 микрон (т. е. 0,1 мм). Отсчеты производились на высотах 5, 35, 65 и 95 микрон над уровнем донышка кюветки. Оказалось, что среднее число частиц на высоте 35 микрон составляет половину того, которое было на высоте 5 микрон; число частиц на высоте 65 микрон было равно половине числа частиц на высоте 35 микрон, а число частиц на высоте 95 микрон равнялось половине числа частиц на высоте 65 микрон. Иными словами, при подъеме вверх на каждые 30 микрон число частиц в данном объеме (соответствовавшем глубине и ширине выбранного поля зрения) уменьшалось вдвое. Поэтому математический закон убывания плотности (числа зерен в данном объеме) с высотой может быть выражен так: если высоты образуют арифметическую прогрессию, то числа зерен образуют геометрическую прогрессию.
Такой закон убывания плотности зерен с высотой должен был сильно поразить и заинтересовать Перрена: ведь по такому же самому закону спадает плотность при подъеме в нашей атмосфере. Блэз Паскаль, знаменитый французский ученый, живший в XVII столетии и впервые применивший к изучению атмосферы барометр, изобретенный итальянцем Торричелли, обнаружил закон, по которому спадает с увеличением высоты плотность атмосферного воздуха. Этот закон, получивший название барометрической формулы, гласит то же самое: плотность каждого из газов, составляющих атмосферу, убывает вместе с увеличением высоты в геометрической прогрессии. Так, например, при подъеме на 5 км количество кислорода, находящегося в кубическом сантиметре, уменьшается вдвое; при подъеме на следующие 5 км оно уменьшается еще вдвое и т. д., и т. д. Это - тот же самый закон, по которому уменьшается с высотой число зернышек гуммигута в кубическом сантиметре эмульсии, но только здесь иные масштабы - вместо 30 микрон здесь мы имеем 5 км. Отчего же получаются другие масштабы? Достаточно посмотреть, что будет, если вместо кислорода исследовать какой-нибудь другой газ атмосферы, например углекислый газ или азот. Для того чтобы количество углекислого газа на кубический сантиметр уменьшилось вдвое, нужно подняться не на высоту 5 км, а всего только на высоту 3,6 км, т. е. на высоту, в 1,37 раза меньшую. Но во столько же раз (в 1,37 раза) масса молекулы углекислого газа (СО2) больше массы молекулы кислорода (O2). Совершенно такое же соотношение получается, если сравнивать кислород не с углекислым газом, а, например, с азотом или с аргоном. Высота, на которую нужно подняться, чтобы плотность уменьшилась вдвое, обратно пропорциональна массе молекулы данного газа. Например, масса молекулы гелия (состоящая только из одного атома Не) в 8 раз меньше массы молекулы кислорода. Поэтому, для того чтобы количество гелия в одном кубическом сантиметре уменьшилось вдвое, нужно подняться не на 5 км, как в случае кислорода, а на 40 км (т. е. в 8 раз выше).
Слой гуммигутовой эмульсии в 100 микрон - это, в сущности, такая же атмосфера, но только состоящая не из молекул кислорода или азота, а из зернышек гуммигута, которые уже достаточно велики, чтобы их можно было видеть в микроскоп. Вследствие большой массы этих зернышек (по сравнению с молекулами газа) уменьшение плотности с высотой происходит быстрее, чем в обыкновенной атмосфере, окружающей нашу Землю, а именно (в случае гуммигутовых зернышек с диаметром 0,21 микрона) плотность уменьшается вдвое при подъеме на 30 микрон. «Эмульсия,- говорит Перрен,- это атмосфера в миниатюре, тяготеющая к Земле. В масштабе такой атмосферы Альпы представлялись бы несколькими микронами, а отдельные холмы стали бы равны молекулам». Для нас всего важнее, что молекулы этой миниатюрной «атмосферы» - зернышки гуммигута - могут быть взвешены, а это позволяет вычислить и массы молекул обыкновенного газа. Так Перрен сумел сделать то, что казалось совершенно невозможным,- взвесить молекулы и атомы.
Проделаем этот нехитрый расчет. Высота, на которой плотность кислорода уменьшается вдвое,- 5 км. Высота, на .которой плотность гуммигута уменьшается вдвое,- 30 микрон. 5 км в 165 миллионов раз больше, чем 30 микрон. Значит, масса гуммигутового зернышка с диаметром в 0,21 микрона превышает массу кислородной молекулы в 165 миллионов раз.
Сколько же весит такой гуммигутовый шарик? Это нетрудно рассчитать, если измерить предварительно, сколько весит кубический сантиметр гуммигута. При этом расчете не следует забывать, что в опытах Перрена зернышки гуммигута находились в воде, а значит, по закону Архимеда, каждый кубический сантиметр гуммигута терял в весе ровно столько, сколько весит кубический сантиметр воды, т. е. 1 грамм. Значит, каждый кубический сантиметр гуммигута в воде весил на один грамм меньше, чем в воздухе. В результате всех расчетов (которые мы пропускаем) получается, что масса зернышка (с поправкой на закон Архимеда) равна 0, 000 000 000 000 01 г.
И это зернышко в 165 миллионов раз превосходит по массе молекулу кислорода. Значит, молекула кислорода весит 0,000 000 000 000 000 000 000 05 г.