испускается, однако же, не одним лишь чистым радием, но также и теми радиоактивными продуктами распада радия, которые всегда присутствуют в радиевом препарате и тоже испускают лучи Беккереля, нагревая все окружающие предметы. Немецкий физик Гесс (в 1912 году) попробовал измерить теплоту, испускаемую препаратом чистого радия, из которого были удалены все продукты распада. Оказалось, что один грамм чистого радия дает всего лишь 25 калорий в час, т. е. 6,9*10-8 калорий в секунду. А мы знаем, что за секунду распадается часть радия, равная 1,4*10-11. Значит, когда распадется весь грамм радия, то выделенная им энергия (при превращении в радон) будет равна
(6,9*10-8)/( 1,4*10-11)=2,05*109 Дж.
Четыреста девяносто миллионов калорий - вот сколько энергии отдает грамм радия, превращаясь в радон! И это еще не вся заключенная в нем энергия: ведь и радон распадается дальше, отдавая энергию еще и еще (в дальнейшем мы увидим, сколько энергии выделяется во всей длинной цепи радиоактивных превращений, в которой превращение радия в радон является лишь одним из звеньев). Для того чтобы понять, как велика эта энергия, заметим, что при горении грамма водорода (а это одна из самых энергичных химических реакций) выделяется 34 000 калорий тепла, т. е. приблизительно в 10 тысяч раз меньше, чем при превращении грамма радия в грамм радона. Еще эффективнее получится сравнение, если энергию пересчитать на атомы. Энергия, выделяющаяся при превращении одного атома радия:
Ra ? Rn + He,
оказывается (как показывает простенький расчет) в полтора миллиона раз больше, чем энергия, освобождающаяся при образовании одной молекулы воды из водорода и кислорода. Все это показывает, что радиоактивные явления - действительно нечто совершенно несравнимое по масштабу с обычными явлениями химии.
Еще более интересные цифры получаются для продолжительности жизни[ 19 ] урана. Количество альфа-частиц, испускаемых ураном, было сосчитано таким же способом, как и количество частиц, испускаемых радием. Отсюда можно было вычислить и продолжительность жизни урана. Оказалось, что данное количество урана должно распасться наполовину в течение четырех с половиной миллиардов лет. Это - огромная цифра даже по сравнению с продолжительностью жизни радия. Четыре с половиной миллиарда лет! Трудно даже представить себе такой огромный промежуток времени. Отсюда следует, что радиоактивность куска урановой руды не могла бы заметно уменьшиться не только за краткий срок человеческой жизни, но даже и за промежуток времени, сравнимый со всей историей человечества. Радиоактивность урана почти бессмертна. В этом смысле, как совершенно справедливо замечает Содди, уран, в сущности говоря, гораздо чудеснее и замечательнее, чем радий: из всех известных нам вещей на земле кусок урановой руды больше всего напоминает «вечный двигатель» - заветную мечту изобретателей. Беда в том, что этот «вечный» или, лучше сказать, «почти вечный» двигатель имеет такую маленькую мощность.
Тот факт, что уран не является «вечным двигателем» на самом деле и что с ним, как с радием, происходит изменение, хотя гораздо более медленное, может быть доказан посредством прямого опыта: из урана постепенно, хотя и весьма медленно, выделяется гелий. Это обнаружил на опыте Содди. Мы приводим из его книжки «Радий и строение атома» рисунок, изображающий прибор, который он использовал, и описание этого прибора. Это описание может служить хорошей иллюстрацией к словам того же Содди о том, что современная физика уже не может утверждать, что «ее величайшие открытия делаются при помощи очень простых приборов, сооруженных из проволоки и сургуча», как с гордостью утверждала старинная наука. Радиоактивные измерения требуют сложных приборов и тончайшей экспериментальной техники. Но дадим слово самому Содди: «На фотоснимке представлен прибор, использовавшийся в моей лаборатории. Это семь совершенно одинаковых аппаратов, стоящих рядом, но. независимых и не сообщающихся друг с другом.
Рис. 18. Прибор Содди для доказательства возникновения гелия из урана.
Каждый аппарат состоит из большой колбы, вмещающей значительное количество исследуемого материала в виде раствора. Колбы снабжены кранами с ртутным затвором особой формы, который, совершенно изолируя на определенный срок содержимое колб от окружающей атмосферы, в то же время может быть открыт в любой момент путем отсасывания книзу столба ртути к барометрических трубках, так что накопившиеся в колбе газы могут быть без всякого впуска воздуха извлечены для испытания на гелий. Присутствие воздуха крайне вредно. Пузырек воздуха величиной с булавочную головку, остававшийся во всем объеме большой колбы или в растворе или же проникавший в колбу в период накопления газа, обычно совершенно губил опыт. Большинство приспособлений имеет целью предварительное тщательное удаление воздуха из приборов до начала опытов. Методы испытания на гелий также совершенно новы. Они основаны на открытом мной свойстве металла кальция поглощать, при нагревании в безвоздушном пространстве до очень высокой температуры, все следы газов, за исключением газов типа гелия и аргона. Таким образом, ничтожное количество полученного гелия (обычно не более одной тысячной доли кубического миллиметра) является совершенно свободным от следов водяного пара и других газов. Наконец, его переводят при помощи ртути в самую маленькую спектроскопическую трубочку, какая только может существовать, и рассматривают его спектр. Как показали многочисленные специальные опыты, желтая спектральная линия гелия может быть замечена при наличии одной миллионной части кубического сантиметра гелия (или, что то те самое, одной пятимиллиардной доли грамма). Это, конечно, наименьшее количество какого бы то ни было химического элемента, которое может быть обнаружено спектроскопом.
Повторяя опыт много раз, можно для каждого сосуда определить продолжительность периода накопления гелия до того момента, когда его можно заметить в выделяющихся газах, и таким образом установить его количество. Я неоднократно получал таким способом гелий из солей урана и, как оказывалось, именно в таком количестве, какое может быть заранее вычислено из теории распада. На каждую тысячу тонн урана получается около двух миллиграммов гелия в год».
Что же получается в результате этого медленного радиоактивного превращения урана? Выше мы уже говорили о том, что радий должен быть одним из продуктов распада урана (хотя и не обязательно непосредственным продуктом). Это заключение мы основывали на том, что радий встречается всегда в рудах, которые содержат уран. Покажем теперь, что, зная продолжительность жизни урана и радия, можно подвергнуть это заключение еще и некоторому количественному испытанию. Для того чтобы понять, в чем заключается это испытание, вдумаемся в следующее рассуждение.
Продолжительность жизни радия составляет всего лишь 1600 лет - огромный срок по сравнению с продолжительностью человеческой жизни, но все же совершенно ничтожный по сравнению с продолжительностью существования земного шара. Ясно, что имеющееся на Земле количество радия должно все время восстанавливаться из какого-то источника: иначе оно давным-давно пришло бы к концу задолго до того, как на Земле появилось поколение физиков, которое оказалось способным открыть радий и изучить его свойства. Отсюда мы заключаем, что радий беспрерывно возникает вновь из какого-то другого радиоактивного элемента, являющегося его предком. Предположим, что таким предком, т. е. не обязательно отцом, а, может быть, прадедом или прапрадедом, является, как это весьма вероятно, уран.
Как должны мы представлять себе процесс рождения и смерти радия?
Если мы возьмем некоторое количество урана и предоставим этот уран самому себе, то атомы урана будут постепенно распадаться, превращаясь в атомы какого-то другого химического элемента; эти последние будут распадаться в свою очередь, превращаясь снова во что-то другое, и т. д., и т. д., пока, наконец, в качестве одной из ступеней этого последовательного процесса, не появятся атомы радия, превращающиеся затем в атомы радона, и т. д. Из всего этого следует, что если данное количество урана, например килограмм, предоставлено самому себе, то через некоторое время в нем должно оказаться какое- то количество радия. Это количество радия сперва равнялось пулю, затем оно начало расти, по, спрашивается, будет ли оно расти все время? Ясно, что все время расти оно не будет и что должна быть какая-то граница этого роста. Эта граница определяется, разумеется, не только тем, что из первоначально взятого килограмма урана не может получиться сколько угодно большого количества радия (если бы радий был конечным продуктом превращения и не подвергался дальнейшему превращению, то из килограмма урана не могло бы получиться больше чем 225,97/238,14 килограмма радия, так как атомная масса радия