рисуется в нашем воображении; а таким является реальное протяжение тел, отвлеченное от всего иного, кроме того, что оно обладает фигурой; это следует из сказанного в двенадцатом правиле, где мы представляли себе саму фантазию вместе с содержащимися в ней идеями не чем иным, как подлинно реальным, протяженным и обладающим фигурой телом. Это также очевидно само по себе, так как ни в каком другом предмете не проявляются более четко все различия пропорций; ведь, хотя одна вещь может быть названа более или менее белой, чем другая, а равно и один звук — более или менее высоким, чем другой, и т. д., мы все же не можем точно определить, состоит ли такое превышение в двойной или тройной пропорции и т. д., кроме как посредством некоторой аналогии с протяжением тела, обладающего фигурой. Следовательно, остается незыблемым и неизменным положение о том, что вполне определенные вопросы едва ли содержат в себе какое-либо затруднение, кроме того, которое заключается в выведении равенств из пропорций; и все то, в чем обнаруживается именно такое затруднение, может и должно быть с легкостью отделено от всякого другого предмета и затем сведено к протяжению и фигурам, о которых мы поэтому, оставив любую другую мысль, только и будем рассуждать далее вплоть до двадцать пятого правила.
Здесь нам хотелось бы найти читателя, склонного к занятиям арифметикой и геометрией, хотя я предпочел бы, чтобы он еще не занимался названными науками, нежели был обучен им по общему обыкновению: ведь применение излагаемых мною здесь правил в изучении этих наук, для которого оно вполне достаточно, является гораздо более легким, чем применение их в вопросах любого другого рода; и польза от этого для достижения более возвышенной мудрости столь велика, что я не побоюсь сказать, что данная часть нашего метода была открыта не благодаря математическим проблемам — скорее сами они должны изучаться почти исключительно ради совершенствования этого метода. И я не предполагаю в упомянутых дисциплинах ничего, кроме, быть может, некоторых вещей, кои известны сами по себе и доступны каждому; однако их познание, каким обычно обладают иные люди, даже если оно не искажено какими-либо явными ошибками, тем не менее затемняется многочисленными двусмысленными и неправильно понятыми принципами, что мы попытаемся в разных местах исправить в дальнейшем.
Под протяжением мы разумеем все то, что обладает длиной, шириной и глубиной, не рассматривая, реальное ли это тело или только пространство; и, кажется, нет нужды в более обстоятельном объяснении, ибо нет ничего, что легче представлялось бы нашим воображением. Так как, однако, ученые часто пользуются столь тонкими различениями, что рассеивают естественный свет и находят неясности даже в тех вещах, которые всегда известны и крестьянам, то их надо предупредить, что словом «протяжение» здесь не обозначается нечто отдельное и обособленное от самого предмета и что вообще мы не признаем таких философских сущностей, которые действительно были бы недоступны воображению. Ведь, хотя кто- нибудь и сумеет убедить себя, например, в том, что, если все, являющееся протяженным в природе вещей, обратится в ничто, это, однако, не окажется противоречащим тому, что будет существовать одно лишь протяжение само по себе, он тем не менее воспользуется для этого представления не телесной идеей, а только разумом, выносящим неправильное суждение. Он сам признает это, если внимательно поразмыслит над тем самым образом протяжения, который он тогда же попытается создать в своей фантазии: действительно, он заметит, что он не воспринимает его лишенным всякого предмета, а представляет себе его совершенно иначе, нежели судит о нем; так что эти отвлеченные сущности (что бы разум ни думал об истине вещей) все-таки никогда не создаются в фантазии отделенными от их предметов.
Но, так как отныне мы не будем ничего предпринимать без помощи воображения, стоит потрудиться над тем, чтобы строго различить, посредством каких идей должно быть сообщено нашему разуму каждое из значений слов. Вот почему мы предлагаем рассмотреть три следующие формы выражения: протяжение занимает место, тело обладает протяжением, и протяжение не есть тело.
Первая из них показывает, каким образом протяжение принимается за то, что является протяженным; действительно, я разумею совершенно одно и то же и когда говорю: протяжение занимает место, и когда говорю: протяженное занимает место. Из этого, однако, не следует, что во избежание двусмысленности лучше пользоваться словом протяженное, ибо оно не обозначало бы столь четко то, что мы разумеем, а именно то, что какой-либо предмет занимает место, так как он является протяженным; и кто-нибудь мог бы истолковать выражение: протяженное есть предмет, занимающий место, — только так, как если бы я сказал: одушевленное занимает место. Это рассуждение объясняет, почему мы сказали, что будем здесь вести речь скорее о протяжении, чем о протяженном, хотя мы и считаем, что протяжение не должно пониматься иначе, чем протяженное.
Перейдем теперь к следующим словам: тело обладает протяжением, — где мы, хотя и понимаем, что протяжение обозначает нечто иное, чем тело, тем не менее не создаем в нашей фантазии двух различных идей: одну — тела, другую — протяжения, а создаем только одну идею протяженного тела; в действительности это не что иное, как если бы я сказал: тело является протяженным, или, вернее, протяженное является протяженным. Это свойственно тем сущностям, которые пребывают только в другом и никогда не могут быть поняты без их предмета; иначе обстоит дело с теми сущностями, которые реально отличаются от их предметов, ибо если бы я, например, сказал: Петр обладает богатствами, — то идея Петра была бы совершенно отлична от идеи богатств; таким же образом, если бы я сказал: Павел богат, — я вообразил бы нечто совершенно иное, чем если бы я сказал: богатый есть богатый. Не распознавая этого различия, многие неверно полагают, что протяжение содержит в себе нечто отличное от того, что является протяженным, подобно тому как богатства Павла есть нечто иное, чем сам Павел.
Наконец, когда говорится: протяжение не есть тело, — тогда слово «протяжение» понимается совсем иначе, чем выше; и в данном значении ему не соответствует в фантазии никакая особая идея, а все это высказывание исходит от чистого разума, который один обладает способностью обособлять отвлеченные сущности такого рода. Это становится причиной заблуждения, свойственного многим людям, которые, не замечая, что протяжение, взятое в таком смысле, не может быть воспринято воображением, представляют его себе посредством верной идеи; поскольку же эта идея необходимо включает в себя понятие тела, то, когда они говорят, что протяжение, понимаемое таким образом, не есть тело, они неразумно противоречат себе самим, приходя к тому, что одна и та же вещь одновременно является и телом и не телом. И весьма важно различать высказывания, в которых такие названия, как протяжение, фигура, число, поверхность, линия, точка, единица и т. д., обладают настолько узким значением, что исключают и то, от чего они на самом деле не отличаются, как тогда, когда говорится: протяжение или фигура не есть тело; число не есть счисляемая вещь; поверхность есть предел тела, линия — поверхности, точка — линии; единица не есть количество и т. д. Все эти и подобные им положения должны быть совершенно отделены от воображения, как бы верны они ни были; вот почему мы не будем вести о них речь в дальнейшем.
Нужно особо отметить, что во всех других положениях, где эти названия, хотя они и сохраняют то же самое значение и признаются тем же самым способом отвлеченными от их предметов, все-таки не исключают или не отрицают что-либо, от чего они реально не отличаются, мы можем и должны воспользоваться помощью воображения, ибо тогда, хотя разум замечает исключительно лишь то, что обозначается словом, воображение все же должно создать верную идею вещи, для того чтобы, когда потребует необходимость, сам разум мог обращаться к другим ее свойствам, не выраженным в названии, и никогда не полагал опрометчиво, что они были исключены. Так, если стоит вопрос о числе, мы воображаем какой-то предмет, измеряемый посредством многих единиц, и, хотя разум в это время размышляет только о множественности данного предмета, мы тем не менее будем остерегаться, чтобы впоследствии он не пришел на основании этого к какому-либо заключению, где предполагалось бы, что счисляемая вещь была исключена из нашего представления; так делают те люди, которые приписывают числам и удивительные тайны, и сущие пустяки, в кои они, конечно, не уверовали бы до такой степени, если бы не представляли себе число отличным от счисляемых вещей. Таким же образом, если мы имеем дело с фигурой, мы будем считать, что говорим о протяженном предмете, понимаемом только в том смысле, что он обладает фигурой; если — с телом, то мы будем считать, что говорим о том же самом предмете как обладающем длиной, шириной и глубиной; если — с поверхностью, то мы представим себе его как обладающий длиной и шириной, опуская, но не отрицая глубину; если — с линией, то представим себе его только как обладающий длиной; если — с точкой, то представим себе его, опуская все иное, кроме того, что он есть сущее.
Хотя я здесь подробно обосновываю все эти выводы, умы смертных все же настолько полны предубеждений, что я еще опасаюсь, что в данной части трактата очень немногие будут достаточно надежно ограждены от всякого риска заблуждения и что в этом длинном рассуждении они найдут объяснение моего мнения слишком кратким; действительно, сами науки — арифметика и геометрия, хотя они