продолговатого мозга и моста заднего мозга лежит ретикулярная формация — сеть нейронов, контролирующих уровень бодрствования, частоту сердечных сокращений, дыхание, кровяное давление, глотание, кашель и ряд других непроизвольных функций, которые должны поддерживаться постоянно. С регуляцией вегетативных функций и мышечного тонуса тесно связан и средний мозг, но у человека эта структура обычно работает под жестким контролем более высоких отделов и редко выступает самостоятельно. В промежуточный мозг включают ряд парных ядер, входящих в состав больших полушарий (среди которых выделяется таламус — крупное ядро, играющее ключевую роль в обработке зрительной информации), и непарный гипоталамус. Эта структура лежит в основании мозга под полушариями и отвечает за постоянство параметров нашего организма. Самая большая часть головного мозга — передний мозг, образующий (вместе с таламусом и некоторыми другими ядрами) большие полушария. Они соединены между собой мозолистым телом — пучком нервных волокон. Полушария выполняют разные функции, а их совместная деятельность координируется через мозолистое тело.

Новые возможности

Когда-то Иван Павлов говорил о том, как много мы могли бы узнать, если бы череп был прозрачным, а возбужденные нервные клетки светились, как лампочки. В последние десятилетия минувшего века техника превзошла его фантазию: в нейрофизиологических лабораториях появились компьютерные томографы, позволяющие воочию увидеть активность нервной ткани не только на поверхности коры, но и в любом слое и структуре мозга. Правда, в отличие от приборов прежнего поколения томографы, основанные на эффекте ядерного магнитного резонанса, «видят» не непосредственно электрическую активность ткани, а уровень обмена веществ в ней. Противники этого метода говорят, что это примерно то же самое, что пытаться выяснить технические характеристики машины, измеряя нагрев разных ее частей в ходе работы. Тем не менее именно томограф впервые «увидел» мозг, в том числе и человеческий, в работе.

Современные методы, позволяющие «заглянуть» внутрь мозга, а именно позитронно-эмиссионная и магнитно-резонансная томография, появились в конце прошлого столетия и стали фундаментом для очередной ступени исследований. Видимо, поэтому и Конгресс США объявил девяностые годы этапом фундаментального изучения человеческого мозга. Инициатива была подхвачена учеными всего мира и получила статус международной.

При помощи томографов — позитронно-эмиссионных (ПЭТ) — стало возможным определить уровень метаболической активности. Для этого пациенту вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга. В тех участках, где обменные процессы активнее, количество позитронов (антиэлектронов), образующихся при распаде изотопов, больше. Рождаясь, они тут же аннигилируют с электронами, порождая пару гамма-квантов, которые можно уловить находящимся вне головы приемником и точно определить точку, из которой они вылетели. Так, одним из первых достижений нейрофизиологов, полученных с помощью ПЭТ, стала наглядная иллюстрация расположения речевых функций в левом полушарии.

Одним из важных направлений с использованием ПЭТ стало микрокартирование мозга, позволяющее определить «местожительство» наиболее сложных проявлений человеческих возможностей, отвечающих, например, за грамматику, смысл речи или математические вычисления. Приток глюкозы с радиоактивной меткой точно указывает центр усиленной работы нервных клеток.

Методом магнитного резонанса, передающего информацию на специальный сканер, можно воочию наблюдать, какие участки мозга активизируются, когда человек испытывает те или иные эмоции. Так, исследования, проведенные в лаборатории неврологии эмоций в Висконсинском университете в Мадисоне, показали, что префронтальная (расположенная за лобной долей) кора левого полушария вовлечена в формирование положительных эмоций, а соответствующий ей участок «правой» коры, наоборот, связан с отрицательными эмоциями, а также функцией запрещения. Изучение этих процессов открывает хорошие перспективы реабилитации людей с психическими заболеваниями.

Другой мощный источник информации о работе мозга дали успехи молекулярной биологии. Физиологи давно догадывались, что долгосрочные изменения в нервной системе, такие как память, каким-то образом связаны с работой генов. В 60-е годы прошлого века, под влиянием ряда открытий, связанных с расшифровкой генетического кода, возникли даже гипотезы, что запоминаемая информация, подобно генетической, записывается в виде больших линейных молекул. Вскоре выяснилось, что в нейронах, вовлеченных в обучение, действительно начинается бурный синтез каких-то белков. Однако на роль «молекул памяти» они явно не годились: чему бы ни учили животное, белки у него вырабатывались одни и те же.

Однако в 90-е годы исследователи получили возможность быстро определять и белки, и гены, с которых они были считаны. И вскоре «белки обучения» были опознаны как факторы транскрипции — сигнальные вещества, запускающие синтез других белков (такие цепочки сигналов, работающие как каскадные усилители, — обычное дело в биохимических системах). В этих многоступенчатых реакциях еще многое неясно, но предполагается, что их конечным продуктом могут быть белки-рецепторы к нейромедиаторам — веществам, передающим нервный импульс с одного нейрона на другой (или, наоборот, подавляющим активность нейрона-адресата). Если это так, то увеличение числа рецепторов может облегчать передачу сигнала, а это прямо соответствует тому, что давно ищут нейрофизиологи.

Еще в 1949 году канадский психолог Дональд Хебб предположил, как мог бы быть устроен механизм памяти. По мнению ученого, главные события памяти разворачиваются в зоне контакта двух нейронов — синапсе. Если через данный синапс импульсы какое-то время идут чаще обычного, то в нем происходят перестройки, облегчающие прохождение сигнала, и в дальнейшем нейрон будет срабатывать и на те импульсы, которые прежде не могли подвигнуть его на импульс. Формирование такого «облегченного запуска» и есть элементарный акт запоминания. В то время эта схема была чисто бумажной, у физиологов не было возможности проследить процессы, происходящие в синапсе. Сегодня они появились. И известно уже множество генов, активизирующихся в ходе работы нейрона.

Если в теле нейрона сигнал существует в форме электрического потенциала, то при контакте

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×