Харди и Литлвуду: он развивает работу, которую начал с ними в Кембридже, продолжает совместную работу над гипотезой Римана. Со временем он стал осторожен до параноидальности. Чтобы коллеги не сделали правильного вывода по списку читаемой им литературы, он начал искать способы маскировать свои заказы. Чтобы спрятать книгу, которая была ему нужна, он указывал в требовании еще три-четыре, не имеющие отношения к делу, или заказывал журнальную статью, только чтобы получить в руки том, содержащий другую статью, которая ему была действительно нужна, и изучал его вдали от посторонних глаз в полном уединении своего кабинета.
Весной того же года Петрос получил еще одно короткое письмо от Харди, где говорилось о смерти Сринивасы Рамануджана от туберкулеза в трущобах Мадраса. Непосредственная реакция на эту новость Петроса озадачила и даже огорчила. Под поверхностным слоем скорби об утрате выдающегося математика и приятного, хорошего и скромного друга в глубине души Петрос ощутил дикую радость от того, что этот феноменальный мозг уже не занимается теорией чисел.
Понимаете, никого другого он не боялся. Его два самых квалифицированных соперника, Харди и Литлвуд, слишком были заняты гипотезой Римана, чтобы серьезно думать о проблеме Гольдбаха. А Давид Гильберт, единодушно признанный величайшим из живущих математиков, или Жак Адамар, единственный, кроме названных, специалист по теории чисел, с которым стоило считаться, оба уже были не более чем уважаемыми ветеранами – почти шестьдесят лет, что для творческого математика равносильно глубокой старости. Но Рамануджана он боялся. Этот уникальный интеллект Петрос считал единственной силой, способной похитить его приз. Несмотря на сомнения в верности гипотезы, которыми он поделился с Петросом, стоило Рамануджану сосредоточить на этой проблеме свой гений… Кто знает, быть может, он доказал бы гипотезу даже вопреки самому себе; быть может, его возлюбленная богиня Намакири предложила бы ему во сне решение, аккуратно записанное санскритом на свитке пергамента!
Теперь, когда он умер, исчезла реальная опасность, что кто-то придет к решению раньше Петроса.
И все же, когда великая математическая школа в Геттингене пригласила Петроса прочесть мемориальную лекцию о вкладе Рамануджана в теорию чисел, он тщательно избегал любых упоминаний своих работ по разложениям, чтобы никто не вздумал проследить их возможные связи с проблемой Гольдбаха.
К концу лета 1922 года (по совпадению, в тот самый день на его страну обрушились новости о разрушении Смирны) Петрос неожиданно встал перед лицом своей первой большой дилеммы.
Случай был вообще-то счастливый: во время долгой прогулки по берегу Шпайхерзее его внезапно посетило озарение, которому предшествовали долгие месяцы изматывающей работы. Он тут же сел за столик в небольшой пивной и записал открытие в блокноте, который всегда носил с собой. Потом на первом же поезде он отправился в Мюнхен и просидел за столом от сумерек до рассвета, прорабатывая детали и просматривая свои рассуждения снова и снова. Закончив работу, он второй раз в своей жизни (первый был связан с Изольдой) ощутил чувство окончательного достижения, абсолютного счастья. Он сумел доказать гипотезу Рамануджана!
В первые годы своей работы над Проблемой он накопил довольно много интересных промежуточных результатов, так называемых лемм, или малых теорем, среди которых был безусловный и богатый материал, достойный публикации. Но у него никогда даже не было искушения их обнародовать. Хотя результаты были вполне приличные, ни один из них не мог бы считаться серьезным открытием – даже по эзотерическим стандартам специалистов по теории чисел.
Да, но сейчас было по-другому.
Проблема, решенная им сегодня днем на прогулке, имела особую важность. По отношению к работе над Проблемой она, конечно, была всего лишь промежуточным шагом, а не конечной целью. И все же это была глубокая и оригинальная теорема, доказанная им самим, такая, которая открывала новые горизонты теории чисел. Она проливала новый свет на вопросы разложений, используя прежнюю теорему Харди-Рамануджана таким способом, о котором никто раньше и не подозревал, не говоря уже о том, чтобы применять. Публикация, несомненно, принесет ему признание в математическом мире, признание куда большее, чем дал его метод решений дифференциальных уравнений. Она вознесет его в первые ряды небольшой, но избранной международной общины специалистов по теории чисел практически на тот же уровень, где обретаются звезды первой величины – Адамар, Харди и Литлвуд.
Опубликовав свое открытие, он также откроет дорогу к Проблеме другим математикам, которые построят на его теореме новые результаты и раздвинут границы науки так, как исследователь-одиночка, как бы он ни был силен, не может даже надеяться. Эти результаты, в свою очередь, помогут ему в дальнейших поисках решения проблемы Гольдбаха. Иными словами, опубликовав «Теорему Папахристоса о разложении» (разумеется, надо будет скромно подождать, пока коллеги дадут ей это название), он приобретет легион помощников. К сожалению, у этой медали есть и другая сторона: один из новых бесплатных (и непрошеных) помощников может случайно наткнуться на лучший способ применить его теорему и, не дай Бог, первым решить проблему Гольдбаха.
Петрос раздумывал недолго – опасности сильно перевешивали выгоды. Публикации не будет. «Теорема Папахристоса о разложении» останется его личной, тщательно охраняемой тайной.
Рассказывая мне об этом, дядя Петрос назвал это решение поворотным пунктом своей жизни. С того момента, сказал он, трудности стали громоздиться на трудности.
Воздержавшись от публикаций своего первого по-настоящему важного вклада в математику, он подставил себя под удвоенный пресс времени. Помимо постоянно гнетущего чувства, что вот идут дни, недели, месяцы и годы, а он все еще далек от желанной цели, теперь возникло и беспокойство, что кто-то повторит его открытие независимо и украдет его славу.
Официальные успехи, достигнутые им прежде (метод, названный его именем, и кафедра в университете), вполне можно было считать выдающимися. Но у математиков свой отсчет времени. Сейчас Петрос был на абсолютном пике своих возможностей, в расцвете сил, который долго продлиться не мог. Настало время совершить великое открытие – если оно вообще ему предстояло.
При его замкнутом образе жизни не было никого, кто мог бы облегчить ему это бремя.
Одиночество ученого, занимающегося математикой, не похоже на другие виды одиночества. Он в самом буквальном смысле слова живет в абсолютно недостижимой вселенной – как для общества, так и для своего ближайшего окружения. Даже самые близкие к нему люди не могут по-настоящему радоваться его радостью или разделять его горести, потому что не могут понять их содержания.
Единственное общество, к которому принадлежит работающий математик, – это его коллеги, но от них Петрос отделил себя сознательно. В течение своего первого года в Мюнхене он иногда подвергался традиционному академическому гостеприимству по отношению к новичкам. Но если он принимал приглашение, то притворяться нормальным, вести себя приятно и поддерживать светскую болтовню было просто пыткой. Приходилось все время удерживаться, чтобы не задуматься над вопросами теории чисел, и подавлять частые импульсы быстро бежать домой и сесть за стол, записать пришедшие мысли. К счастью, то ли из-за его обычных отказов, то ли оттого, что все видели, как ему это неловко, его стали приглашать все меньше и меньше и, наконец, к его великому облегчению, перестали приглашать совсем.
Нет нужды добавлять, что он так и не женился. Рациональное объяснение, которое он мне привел, состояло в том, что жениться на другой женщине означало бы изменить его великой любви, «милой Изольде», и это объяснение, конечно, было только предлогом. На самом деле он просто отлично понимал, что его образ жизни не допускает присутствия другого лица. Одержимость работой не отпускала Петроса ни на миг. Проблема Гольдбаха требовала его целиком: телом, душой и временем.
Летом 1925 года дядя Петрос получил второй важный результат, который в комбинации с «Теоремой о разложении» открывал новые подходы ко многим классическим проблемам простых чисел. Согласно