Я приехал, и дядя, ни слова не говоря, провел меня в свою так называемую гостиную, которую я не узнал. Всю мебель он сдвинул к стенам, даже кресло и шахматный столик, навалил штабеля книг вдоль стен еще выше, освободив посередине широкое пустое пространство. Опять-таки ни слова не сказав, он взял у меня из рук мешок с бобами и начал раскладывать их на полу прямоугольниками. Я молча смотрел.
Закончив, он сказал:
– На предыдущих уроках мы изучили мой ранний подход к Проблеме. Это была хорошая, пусть даже превосходная математика, но математика довольно традиционного вида. Теоремы, которые я доказал, были трудны и важны, но они развивали пути, начатые другими, а не мной. Но сегодня я представлю тебе свою самую важную и оригинальную работу, мой прорыв. Открыв геометрический подход, я вторгся наконец на девственную, неисследованную территорию.
– Тем более жаль, что ты ее оставил, – сказал я, подготавливая почву для начала конфронтации.
Он не обратил внимания.
– Основной тезис, лежащий в основе геометрического подхода, состоит в том, что умножение – операция не естественная.
– Что ты имеешь в виду под словом «не естественная»? – спросил я.
– Леопольд Кронекер когда-то сказал: «Всеблагой Господь создал натуральные числа, все остальное – работа человека». Так вот, как он создал натуральные числа – думаю, Кронекер забыл это добавить, – он создал и сложение с вычитанием, или дать и взять. Я рассмеялся:
– Дядя, мы будем заниматься математикой или теологией?
И снова он не обратил внимания на мою реплику.
– Умножение не естественно в том же смысле, в котором сложение естественно. Это измышленное, вторичное понятие, означающее не более чем ряд последовательных сложений одинаковых элементов. Например, 3x5 это не что иное, как 5 + 5 + 5. Изобрести имя для повторения, да еще назвать это «операцией» больше похоже на работу дьявола…
Я не рискнул вставить юмористическое замечание.
– Если умножение – не естественно, – продолжал дядя, – то тем более не естественно понятие «простого числа», им порожденное. Крайняя трудность основных проблем, связанных с простыми числами, – прямое из этого следствие. Причина отсутствия видимого порядка в их распределении состоит в том, что само понятие умножения – а в силу этого и простого числа – излишне усложнено. Это – основное положение. Мой геометрический метод вызван к жизни просто желанием построить естественный способ рассмотрения простых чисел.
Дядя Петрос показал на конструкцию, которую соорудил во время своей речи.
– Что это? – спросил он меня.
– Прямоугольник, выложенный из бобов, – ответил я. – В нем 7 строк и 5 столбцов, их произведение равно 35 – общее число бобов в прямоугольнике. Верно?
Он пустился в объяснение, как его поразило наблюдение, которое, хотя и было абсолютно элементарным, казалось ему исполненным интуитивных глубин. А именно: если построить (теоретически) все возможные прямоугольники из точек (или из бобов), это даст все натуральные числа – кроме простых. (Поскольку простое число не является произведением, оно не может быть представлено прямоугольником – только одиночной строкой.) Далее дядя стал объяснять исчисление операций над прямоугольниками и привел мне несколько примеров. Потом сформулировал и доказал несколько элементарных теорем.
Я стал постепенно замечать изменения в его стиле. На предыдущих уроках дядя был эталоном преподавателя. Он варьировал скорость изложения обратно пропорционально трудности материала, всегда убеждаясь, что я понял, и лишь потом двигаясь дальше. Но чем глубже он уходил в геометрический подход, тем торопливее становились его ответы, путанее, отрывистее, иногда до полной непонятности. В какой-то момент он вообще перестал обращать внимание на мои вопросы, и то, что я поначалу принял за объяснения, оказалось отрывками стремительного внутреннего монолога.
Сначала я отнес эту аномальную форму изложения за счет того, что дядя помнит детали своего геометрического подхода не так ясно, как привычный аналитический подход, и сейчас отчаянно восстанавливает их на ходу.
Я сел и стал за ним наблюдать: он расхаживал по комнате, перекладывая свои прямоугольники, бормотал про себя, подбегал к каминной полке, где я оставил бумагу и карандаш, что-то писал и зачеркивал, заглядывал в потрепанный блокнот, еще что-то бормотал, возвращался к бобам, оглядывался по сторонам, замирал в задумчивости, перекладывал бобы заново, снова писал… Все чаще от упоминания о «многообещающем направлении мысли», «потрясающе изящной лемме» или «глубокой теоремке» (все явно его собственного изобретения) лицо его освещалось улыбкой самодовольства и глаза загорались мальчишеской веселостью. Я вдруг понял, что видимый мне хаос был не чем иным, как отражением внутренней хаотической умственной деятельности. Он не только отлично помнил «знаменитый бобовый метод» – эта память заставляла его разбухать от гордости!
И тут мне на ум впервые пришло подозрение, превратившееся через минуту почти в уверенность.
Когда я впервые обсуждал с Сэмми, почему дядя Петрос бросил проблему Гольдбаха, нам обоим казалось очевидным, что причина – в каком-то перегорании, тяжелом случае «научной боевой усталости» после многих годов бесплодных атак. Бедняга бился, бился, бился, каждый раз терпя неудачу, и наконец, когда выдохся так, что не мог более выносить разочарования, Курт Гёдель дал ему отличный, хотя и притянутый за уши предлог. Но сейчас, глядя, как дядя Петрос самозабвенно возится с бобами, мне представился новый и куда более увлекательный сценарий: не может ли быть, в полную противоположность тому, о чем я думал раньше, что его капитуляция пришлась на самый пик достижений? Даже точно на тот момент, когда он был готов решить проблему?
Вспышка памяти высветила слова, которыми дядя описал период до посещения Тьюринга, – слова, истинное значение которых я почти не понял, когда услышал. Да, он говорил, что отчаяние и сомнение в себе у него тогда, в 1933 году в Кембридже, были сильнее, чем когда бы то ни было. Но разве сам он не называл их «неизбежным унижением перед триумфом», даже «родовыми муками великого открытия?» А что он говорил чуть раньше насчет своей «самой важной работы», «важной и оригинальной работы, истинного прорыва»? О Господи Боже мой! Не усталость и не разочарование были причиной: его капитуляция была потерей боевого духа перед великим прыжком в неизвестность и грядущим триумфом!
Волнение от этой мысли было так велико, что я больше не мог выжидать тактически правильного момента и начал атаку немедленно:
– Я вижу, ты все еще очень высокого мнения о «знаменитом бобовом методе Папахристоса»?
Я прервал ход его мыслей, и несколько секунд ему потребовалось, чтобы осознать мое присутствие.
– У тебя потрясающая способность замечать очевидное, – грубо буркнул он. – Конечно, я о нем высокого мнения.
– В отличие от Харди и Литлвуда, – добавил я, нанося первый серьезный удар.
Реакция была ожидаемой – только гораздо более сильной, чем я мог думать.
– «Проблему Гольдбаха не решить гаданием на бобах, старина»! – хриплым грубоватым голосом бухнул он, явно пародируя Литлвуда. Потом со злобным передразниванием женоподобия изобразил вторую половину этого бессмертного математического дуэта: – «Слишком элементарно для полезного, дорогой мой друг, даже несколько инфантильно!»
Дядя яростно бахнул кулаком по камину.
– Эта задница Харди, – заорал он, – назвал мой геометрический подход «инфантильным» – будто он в нем хоть что-нибудь понял!
– Ну-ну, дядя, – сказал я вразумляюще, – нельзя же обзывать задницей самого Г. X. Харди!
Он еще сильнее ударил кулаком по каминной полке.
– Задница он и был, да еще и содомит! Ваш «Великий Г. X. Харди – Королева Теории Чисел!»
Это было так на него не похоже, что я даже ахнул.
– Дядя Петрос, что за мерзости ты говоришь!
– Я просто называю вещи своими именами! Лопату – лопатой, а пидора – пидором!
Я не только поразился, но и даже развеселился: передо мной как по волшебству возникал совершенно новый человек. Может ли быть, чтобы вместе со «знаменитым бобовым методом» на поверхность всплыло его старое (то есть молодое) «я»? И сейчас я впервые за свою жизнь слышу истинный голос Петроса