результаты, согласующиеся с экспериментом.

К подобной концепции можно подойти только на основе отождествления математического символа — ?-функции, с реальным состоянием микрообъекта. Корни подобного отождествления уходят в классическую механику, где, как сказано выше, понятие «состояние» отождествлялось с его описанием. Подобное отождествление до сих пор широко распространено и среди физиков, и среди философов. Если же считать, что квантовый объект реален, то мы должны прийти к выводу, что его состояние реально и определяет характеристики, в частности

?-
функцию. Действительно, сама
?-
функция — лишь математический символ, продукт человеческого сознания, и поэтому имеет под собой вполне реальную, материальную основу; ?-функция связана с реальными процессами через понятия, отражающие внешние свойства микрообъектов. Таким образом, для выяснения физического смысла
?-
функции необходимо установить связь этого понятия с другими понятиями физики, а также с философскими категориями. Это позволит определить место и роль понятия «
?-
функция» в структуре и развитии квантовой механики. На основе подобного анализа можно найти природный аналог
?-
функции. Но анализ этот имеет смысл начинать с анализа понятия «состояние». Физический смысл
?-
функции прояснится лишь тогда, когда оно будет четко определено в квантовой механике.

Как отмечают философы (в частности, А. Л.

Симанов
), следующая ошибка рассматриваемого толкования понятия «состояние» в квантовой механике — противопоставление общего и единичного. Открытым остается вопрос о природе состояния
квантовомеханического
объекта и в интерпретации Эйнштейн
а-
Мандельштама-Блохинцева, согласно которой квантовая механика изучает поведение не индивидуальной микрочастицы, а совокупности большого числа этих частиц и совокупности систем частиц. А. Эйнштейн[55] писал, что
?-
функция «ни в коем случае не описывает состояние, свойственное одной-единственной системе; она относится скорее к нескольким системам, то есть к „ансамблю систем“».

Иначе говоря,

?-
функция является характеристикой состояния большого числа однотипных независимых микрообъектов, находящихся в определенных условиях, то есть квантовая механика — это статистическая теория ансамбля микрообъектов.

Философы считают, что подобная концепция весьма ограниченна и абсолютизирует опосредованный подход к анализу квантового состояния. Она не лишена также определенных логических недостатков. Согласно ей, квантовый ансамбль является первичным объектом изучения в квантовой механике. Но определение, даваемое

?-
функции, относит ее к микрочастице, и понятие «квантовый ансамбль» в него не входит. Кроме того,
?-
функция определяется внешними
макроусловиями
, независимо от ансамбля. Следовательно, квантовый ансамбль — это вторичный объект.

Из утверждения — квантовый ансамбль составляют изолированные частицы — неясно, каковы специфические свойства ансамбля, которые отличают его от классических статистических ансамблей. Очевидно, специфичность квантового ансамбля обусловлена особенностями (специфичностью) составляющих его микрочастиц. Мы возвращаемся к тому, что на первичном уровне (и опять-таки первичный уровень) — микрочастица.

Следствием подобных представлений явилось неправильное толкование и определение понятия «

квантовомеханическое
состояние». «…Состояние частицы или системы, характеризуемое волновой функцией, — подчеркивает Д. И. Блохинцев[56] , — следует понимать как принадлежность частицы или системы к определенному чистому квантовому ансамблю. Именно в этом смысле и будут употребляться в дальнейшем слова: „состояние частицы“, „состояние квантовой системы“ и т. д.».

Таким образом, понятие «квантовый ансамбль» определяется через понятие «состояние частицы», а понятие «состояние» — через понятие «квантовый ансамбль».
К тому же данное определение фактически сводит сущность
квантовомеханического
состояния к принадлежности частицы к ансамблю. Очевидно, что подобное толкование неудовлетворительно.

Квантовая механика требует создания системы идеализации, базирующейся на понятии реального состояния индивидуального объекта. В этом смысле определенный интерес вызывает концепция квантового состояния, предложенная В. А. Фоком[57]. Он, в основном, опирается на реальность

квантовомеханического
состояния отдельного микрообъекта. В. А. Фок считает, что
?-
функция относится не к ансамблю частиц, а к отдельной частице, характеризуя вероятность того или иного состояния микрообъекта при данных условиях. Он вводит в описание состояния микрообъекта «…
существенно новый
элемент — понятие вероятности, а тем самым и понятие потенциальной возможности». И далее пишет: «…Введение их отражает не неполноту условий, а объективно существующие при данных условиях потенциальные возможности».

Следовательно,

?-
функция характеризует возможные состояния микрообъекта при определенном макроскопическом окружении. Эти возможные состояния представляют собой ансамбль. В действительность превращается одна из возможностей этого ансамбля. Таким образом, по В. А. Фоку, понятие «
квантовомеханическое
состояние» отражает присущие микрочастицам объективные возможности обнаружения определенных значений физических величин.

Как замечает А. Л.

Симанов
, подобное толкование наиболее тесно смыкается с философской интерпретацией понятия «состояние» как отражающего определенные формы бытия материальных объектов. Но и здесь виден ряд недостатков. Действительно, такое толкование отражает лишь одну сторону реального
квантовомеханического
состояния, а именно — возможность его проявления, и ничего не говорит о сущности самого состояния. В интерпретации В. А. Фока заметно влияние классических представлений, в которых состояние объекта отождествлялось с его характеристиками. Нельзя также трактовать это понятие в отрыве от других философских категорий. Обоснование и толкование этого понятия осуществимы лишь в системе других понятий и представлений, что можно сделать только на основе соотнесения новых данных с общими представлениями о структурной организации материи и с теорией познания.

Далее А. Л.

Симанов
анализирует взгляды различных философов и делает некоторые выводы, например, следующий: состояние объекта обусловлено внешними и внутренними взаимодействиями и формируется ими, то есть состояние обусловлено как внешним окружением, так и внутренним миром. Еще один вывод: не состояние объекта задается характеристиками, а характеристики определяются его состоянием. Точнее, в процессе изучения объекта выделяется то или иное его состояние, которое описывается выбираемым нами набором характеристик, а величины их определяются состоянием объекта. И так далее…

Пожалуй, довольно о философии. Я понимаю, что нелегко разобраться во всех этих философских рассуждениях, но, думаю, мне удалось донести мысль, что с понятием «состояние» в квантовой теории все не так просто. Почему же нет единого мнения о «состоянии» среди квантовых физиков? Почему в классической физике не существует проблем с понятием «состояние», а вот в квантовой теории сложности возникают? На этот вопрос я постараюсь ответить ниже, пока же скажу кратко. Все очень просто — единого мнения нет потому, что квантовая теория существенно расширяет пространство возможных состояний, в которых может находиться система, и оказывается, что есть такие состояния объектов, которые «ни в какие ворота не лезут» с точки зрения наших привычных представлений о реальности. Например, нелокальные запутанные состояния, которые являются просто «мистическими» для классической физики. Отсюда и различные попытки избавиться от этой «мистики» и вернуться в область привычных представлений о реальности, но нужно ли это делать? Не правильнее ли будет принимать мир таким, какой он есть, и не подстраивать его под свои представления? Может быть, и не нужно пытаться изо всех сил втиснуть квантовую теорию в тесные рамки видимой нами реальности. Может быть, лучше честно признаться в том, что окружающая Реальность гораздо шире, полнее и глубже не только классической физики, но и вообще любых наших теоретических моделей и представлений о Реальности.

Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату