(линии уровня сгущаются).

В качестве примера можно взять электрическое поле и показать, что такое градиент энергии в этом случае.

Исходить я буду из разности потенциалов. Для начала приведу некоторые определения из книги И. Е. Тамма «Основы теории электричества»[160].

Разность потенциалов между двумя точками электростатического поля равна взятой с обратным знаком работе, совершаемой силами поля при перемещении единичного положительного заряда из первой точки во вторую.

?

ф
= ф2ф1 = — А.

В свою очередь, работа, совершаемая силами электростатического поля при перемещении заряда на отрезок ?s (это вектор), равна:

А = Е?s,

где

Е
— вектор напряженности электрического поля, по определению, это сила, действующая на единичный положительный заряд. Следовательно, сила, действующая на некоторый (уже не единичный) заряде, будет равна: F =
еЕ
.

Из двух предыдущих выражений получаем:

?

ф
=
А
= —Е?s.

Или, для бесконечно близких точек:

d
ф
= —Е
ds
.

Отсюда, по определению градиента:

Е= —N

ф
.

Таким образом, напряженность электростатического поля Е равна градиенту потенциала

ф
, взятому с обратным знаком.

Так как градиент потенциала направлен в сторону его возрастания и характеризует скорость этого увеличения, то можно сказать, что напряженность электрического поля есть мера быстроты снижения потенциала, или, проще говоря, она равна спаду потенциала.

Направление напряженности поля совпадает с направлением ортогональных траекторий эквипотенциальных поверхностей. Поэтому эти ортогональные траектории (линии градиента) совпадают с линиями электрических сил, или силовыми линиями.

Теперь, умножив в последней формуле обе части на заряд е и учитывая связь между напряженностью и силой F =

еЕ
, а также между потенциалом и энергией W =
еф
, получим, что сила равна градиенту энергии:

F = —NW.

Знак минус стоит в этом равенстве потому, что речь здесь идет о внешней силе, действующей на заряд, а не о внутренней, как в выражении (5.12).

Из приведенного примера видно, что линии градиента можно понимать как силовые линии, которые характеризуют распределение энергии в системе.

Другими словами, линии градиента (силовые линии) показывают, как будут разворачиваться события. Они выстраивают ту цепочку событий (последовательность состояний), которая будет реализована в конкретном случае, когда задано поле состояний (поле потенциалов), и есть исходное состояние (начальное положение объекта в поле).

Чтобы приблизиться к практически значимым вещам, зададимся теперь таким вопросом: если у нас есть некое тело или, в

более общем
случае, просто произвольно выделенный объем в некоторой сложной системе, то можем ли мы получить что-нибудь интересное, анализируя распределение энергии в этом объеме? В качестве «носителя» энергии может выступать все что угодно: масса, температура, давление, электромагнитные или гравитационные поля и т. д. — в принципе, любая энергия, вплоть до энергии наших мыслей и чувств.

Каждой точке выделенного объема поставим в соответствие свое значение энергии, и пусть энергия в объеме распределяется неравномерно. Таким образом, мы имеем скалярное поле, и в каждой его точке можем найти локальное значение градиента энергии. Казалось бы, эти абстрактные теоретические манипуляции ни к чему не ведут. Ну, получим мы вместо скалярного поля — векторное, будем иметь векторы (градиенты энергии) в каждой точке нашего объема, и что толку? На первый взгляд, все только усложнится, и никакой физически значимый результат мы не получим. Но давайте теперь проинтегрируем эти локальные градиенты энергии (сложим «маленькие» векторы-градиенты) по всему выделенному объему, то есть найдем полный градиент энергии в данном объеме. И получим очень интересный физический факт — наш вектор полного градиента энергии есть не что иное, как вектор силы, действующей на наш объем! Или F = NW.

Таким образом, если энергия в объеме распределена неравномерно, и есть ненулевой вектор полного градиента энергии в этом объеме, то на наш выделенный элемент реальности будет действовать сила (внутренняя), равная по величине и направлению градиенту энергии. Это эквивалентно действию внешней силы, противоположной по направлению. То есть любая сила, приложенная к некоторому элементу реальности, неразрывно связана с наличием градиента энергии в этом объеме.

Физический смысл выражения (5.12) остается справедливым для любого координатного представления, для любых пространств с любой метрикой и даже при ее отсутствии. То есть оно работает даже при исходном нелокальном суперпозиционном состоянии.

Скажем, изначально в Универсуме все было однородно, и не существовало пространства-времени ни на каких его уровнях (даже на тонких не было ангельского мира).
А затем, если некоторые подсистемы Универсума по какой- либо причине (например, Слова) станут отличаться по своему состоянию, то есть будут обладать разной энергией, то возникнут и градиенты энергии (силы) в пространстве состояния этих подсистем (меньшей размерности, чем исходное пространство состояния Универсума). Одновременно с этим появится и пространство-время, соответствующее данным градиентам энергии, поскольку возникает неоднородность распределения энергии. И это необязательно будет наше пространство-время — возможно, это будут пространства тонких уровней реальности, все зависит от размерности подсистем. В итоге появляется целая совокупность различных уровней реальности, каждая из которых имеет свои пространственно-временные метрики.

Но при любых обстоятельствах происходит примерно следующее. Из Пустоты, находящейся вне

Вы читаете Квантовая магия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату