(читай: «набла») — к векторам или тензорам). Внешняя производная, или градиент, является более строгой формой понятия «дифференциал». В отличие от дифференциала
Задание 1-формы в данной точке (связь с точечным описанием) для некоторого геометрического объекта, описывающего физическую величину, например, для тензора произвольного ранга (0-ранг — скаляр, 1-ранг — вектор или 1-форма, 2-ранг — тензор второго ранга и т. д.), предполагает выполнение трех основных операций. Это, прежде всего, задание вектора смещения, в направлении которого данный объект меняется от точки к точке. Во-вторых: моделирование исходного объекта в окрестностях каждой точки в виде плоских поверхностей уровня, расположенных на одинаковых расстояниях.
Таким образом, дифференциальная геометрия дает более строгое определение градиента в качестве 1-формы, в отличие от обычных представлений градиента как вектора. Градиент, который нам более знаком, — это всего лишь вектор, поставленный в соответствие 1-форме градиента с помощью уравнения (которое уже приводилось)
Дифференциальная геометрия расширяет также понятие тензора. Если обычно под тензором понимается линейный оператор с входными каналами для векторов и выходными данными либо в виде вещественных чисел, либо в виде векторов, то теперь во входной канал может подаваться не только вектор, но и 1-форма.
В качестве примера рассмотрим координатное представление тензора второго ранга. В отличие от обычного вектора, который может быть разложен лишь в одном произвольном базисе из ортонормированных векторов (поэтому его можно считать тензором первого ранга), тензор второго ранга разлагается на компоненты в двух базисах. В качестве любого из этих базисов (или обоих сразу) могут служить либо наборы из обычных базисных векторов
Точно так же, как произвольный вектор можно разложить по базису
Вводя в некоторый тензор второго ранга S произвольные вектор v и 1-форму ? и, зная компоненты их разложения в своих базисах, через них можно выразить компоненты самого тензора S(v, ?) = S (
Словарь терминов