moment. His ideas and patents, what Conant could pry out of him, were released under pseudonyms known only to Conant—Kidder didn't care.

The result, of course, was an infiltration of the most astonishing advancements since the dawn of civilization. The nation profited—the world profited. But most of all, the bank profited. It began to get a little oversize. It began getting its fingers into other pies. It grew more fingers and had to bake more figurative pies. Before many years had passed, it was so big that, using Kidder's many weapons, it almost matched Kidder in power.

Almost.

Now stand by while I squelch those fellows in the lower left-hand corner who've been saying all this while that Kidder's slightly improbable; that no man could ever perfect himself in so many ways in so many sciences.

Well, you're right. Kidder was a genius—granted. But his genius was not creative.

He was, to the core, a student. He applied what he knew, what he saw, and what he was taught. When first he began working in his new laboratory on his island he reasoned something like this:

'Everything I know is what I have been taught by the sayings and writings of people who have studied the sayings and writings of people who have—and so on.

Once in a while someone stumbles on something new and he or someone cleverer uses the idea and disseminates it. But for each one that finds something really new, a couple of million gather and pass on information that is already current. I'd know more if I could get the jump on evolutionary trends. It takes too long to wait for the accidents that increase man's knowledge—my knowledge. If I had ambition enough now to figure out how to travel ahead in time, I could skim the surface of the future and just dip down when I saw something interesting. But time isn't that way. It can't be left behind or tossed ahead. What else is left?

'Well, there's the proposition of speeding intellectual evolution so that I can observe what it cooks up. That seems a bit inefficient. It would involve more labor to discipline human minds to that extent than it would to simply apply myself along those lines. But I can't apply myself that way. No one man can.

'I'm licked. I can't speed myself up, and I can't speed other men's minds up. Isn't there an alternative? There must be—somewhere, somehow, there's got to be an answer.'

So it was on this, and not on eugenics, or light pumps, or botany, or atomic physics, that James Kidder applied himself. For a practical man he found the problem slightly on the metaphysical side; but he attacked it with typical thoroughness, using his own peculiar brand of logic. Day after day he wandered over the island, throwing shells impotently at sea gulls and swearing richly. Then came a time when he sat indoors and brooded. And only then did he get feverishly to work.

He worked in his own field, biochemistry, and concentrated mainly on two things—genetics and animal metabolism. He learned, and filed away in his insatiable mind, many things having nothing to do with the problem in hand, and very little of what he wanted. But he piled that little on what little he knew or guessed, and in time had quite a collection of known factors to work with. His approach was characteristically unorthodox. He did things on the order of multiplying apples by pears, and balancing equations by adding log V-l to °ne side and °° to the other. He made mistakes, but only one of a kind, and later, only one of a species. He spent so many hours at his microscope that he had quit work for two days to get rid of a hallucination that his heart was pumping his own blood through the mike. He did nothing by trial and error because he disapproved of the method as sloppy.

And he got results. He was lucky to begin with and even luckier when he formularized the law of probability and reduced it to such low terms that he knew almost to the item what experiments not to try. When the cloudy, viscous semifluid on the watch glass began to move itself he knew he was on the right track. When it began to seek food on its own he began to be excited. When it divided and, in a few hours, redivided, and each part grew and divided again, he was triumphant, for he had created life.

He nursed his brain children and sweated and strained over them, and he designed baths of various vibrations for them, and inoculated and dosed and sprayed them.

Each move he made taught him the next. And out of his tanks and tubes and incubators came amoebalike creatures, and then ciliated animalcules, and more and more rapidly he produced animals with eye spots, nerve cysts, and then—victory of victories—a real blastopod, possessed of many cells instead of one. More slowly he developed a gastropod, but once he had it, it was not too difficult for him to give it organs, each with a specified function, each inheritable.

Then came cultured mollusklike things, and creatures with more and more perfected gills. The day that a nondescript thing wriggled up an inclined board out of a tank, threw flaps over its gills and feebly breathed air, Kidder quit work and went to the other end of the island and got disgustingly drunk. Hangover and all, he was soon back in the lab, forgetting to eat, forgetting to sleep, tearing into his problem.

He turned into a scientific byway and ran and down his other great triumph—

accelerated metabolism. He extracted and refined the stimulating factors in alcohol, coca, heroin, and Mother Nature's prize dope runner, cannabis indica. Like the scientist who, in analyzing the various clotting agents for blood treatments, found that oxalic acid and oxalic acid alone was the active factor, Kidder isolated the accelerators and decelerators, the stimulants and soporifics, in every substance that ever undermined a man's morality and/or caused a 'noble experiment.' In the process he found one thing he needed badly—a colorless elixir that made sleep the unnecessary and avoidable waster of time it should be. Then and there he went on a twenty-four-hour shift.

He artificially synthesized the substances he had isolated, and in doing so sloughed away a great many useless components. He pursued the subject along the lines of radiations and vibrations. He discovered something in the longer reds which, when projected through a vessel full of air vibrating in the supersonics, and then polarized, speeded up the heartbeat of small animals twenty to one. They ate twenty times as much, grew twenty times as fast, and—died twenty times sooner than they should have.

Kidder built a huge hermetically sealed room. Above it was another room, the same length and breadth but not quite as high. This was his control chamber. The large room was divided into four sealed sections, each with its individual miniature cranes and derricks—handling machinery of all kinds. There were also trapdoors fitted with air locks leading from the upper to the lower room.

By this time the other laboratory had produced a warm-blooded, snake-skinned quadruped with an astonishingly rapid life cycle—a generation every eight days, a life span of about fifteen. Like the echidna, it was oviparous and mammalian. Its period of gestation was six hours; the eggs hatched in three; the young reached sexual maturity in another four days. Each female laid four eggs and lived just long enough to care for the young after they hatched. The male generally died two or three hours after mating.

The creatures were highly adaptable. They were small—not more than three inches long, two inches to the shoulder from the ground. Their forepaws had three digits and a triple-jointed, opposed thumb. They were attuned to life in an atmosphere with a large ammonia content. Kidder bred four of the creatures and put one group in each section of the sealed room.

Then he was ready. With his controlled atmospheres he varied temperatures, oxygen content, humidity. He killed them off like flies with excesses of, for instance, carbon dioxide, and the survivors bred their physical resistance into the next generation. Periodically he would switch the eggs from one sealed section to another to keep the strains varied. And rapidly, under these controlled conditions, the creatures began to evolve.

This, then, was the answer to his problem. He couldn't speed up mankind's intellectual advancement enough to have it teach him the things his incredible mind yearned for. He couldn't speed himself up. So he created a new race—a race which would develop and evolve so fast that it would surpass the civilization of man; and from them he would learn.

They were completely in Kidder's power. Earth's normal atmosphere would poison them, as he took care to demonstrate to every fourth generation. They would make no attempt to escape from him. They Would live their lives and progress and make their little trial-and-error experiments hundreds of times faster than man did.

They had the edge on man, for they had Kidder to guide them. It took man six thousand years really to discover science, three hundred to put it to work. It took Kidder's creatures two hundred days to equal man's mental attainments. And from then on—Kidder's spasmodic output made the late, great Tom Edison look like a home handicrafter.

He called them Neoterics, and he teased them into working for him. Kidder was inventive in an ideological way; that is, he could dream up impossible propositions providing he didn't have to work them out. For example, he wanted the Neoterics to figure out for themselves how to build shelters out of porous material. He created the need for such shelters by subjecting one of the sections to a high-pressure rainstorm which flattened the inhabitants. The

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×