потоков. В этой главе первая диаграмма потоков будет строиться шаг за шагом вслед за выводом соответствующих уравнений. В дальнейшем для экономии места диаграммы потоков будут даваться сразу целиком, опережая уравнения, которые должны им сопутствовать[66] .
13. 5. Уравнения системы
13.5.1. Уравнения для розничной торговли

Мы начнем с двух простых уравнений: одно описывает уровень невыполненных заказов, другое — запасы товаров. На рис. 13-2 показаны эти две переменные на первой стадии построения диаграммы потоков. Здесь
,
где
В указанном справа порядковом номере уравнения цифра 13 означает номер, главы цифра 1 — номер уравнения внутри главы, а индекс

Интервал времени между решениями
На рис. 13-2 для полноты учета всех видов потока показан архив выполненных заказов, исключаемых из действующей системы.
Второе уравнение, описывающее уровень запасов в розничной торговле, по существу аналогично первому:
,
где
Приведенные уравнения, описывающие уровни, просты и неопровержимы. Они представляют собой основу описания системы. Эти уравнения отражают тот факт, что действительный остаток определяется путем последовательного прибавления или вычитания количеств, определяемых темпами входящего и исходящего потоков.
Уравнения темпов, напротив, не являются столь очевидными и простыми. Именно в уравнениях темпов отображается механизм решений, свойственный системе. Уравнения темпов отражают наше понимание факторов, определяющих действия. Решения, которые регулируют темпы и лежат в основе уравнений темпов, должны быть сформулированы таким образом, чтобы уравнения оставались справедливыми и достаточно точными при любых, даже самых больших изменениях значений переменных, которые могут иметь место в системе. Уравнения темпов часто включают нелинейные функциональные зависимости, описывающие реальное поведение системы в различных обстоятельствах.
Вопреки обычному представлению требование, чтобы уравнения темпов были верными при экстремальных значениях входящих в них переменных, скорее облегчает, чем затрудняет, построение
Здесь под темпом отгрузки товаров покупателям понимается объективно обусловленный темп. Это значит, что он определяется состоянием системы, а не чьим-либо произвольным административным решением. В принципе можно представить себе решение вообще не посылать имеющиеся товары; однако встречается оно редко, и мы будем им пренебрегать. С математической точки зрения нет никакой разницы между уравнениями явных и неявных решений. Однако определение вида решения обычно помогает внести ясность в наши мысли при построении уравнения.
Темп отгрузки товаров покупателям должен зависеть от величины задолженности по невыполненным заказам, по которым товары подготовлены к отправке. В предельном случае, когда нет заказов, не будет и поставки. Точно так же возможность поставить товары должна зависеть от наличия запасов, из которых может производиться поставка. Темп поставок не зависит от каких-либо других темпов, имеющих место в системе в тот же момент времени. Возможность поставки в данный момент зависит от наличия невыполненных заказов, но не зависит от существующего в данный момент времени