DMD — почтовое запаздывание отправленных оптовыми базами заказов (недели);

MTD — исходное количество товаров в пути к оптовым базам (единицы);

DTD — запаздывание транспортировки товаров на оптовые базы (недели).

Подобная система уравнений для определения исходных величин применительно к производственному звену будет иметь вид:

RRF=RRR,

13–68, N

UOF=(RSF)(DHF+DUF),

13–69, N

IAF=(AIF)(RSF),

13–70, N

RSF=RRF,

13–71, N

CPF=(DCF)(RRF),

13–72, N

OPF=(DPF)(RRF),

13–73, N

где

RRF — исходная величина требований, получаемых производством (единицы в неделю);

RRR — исходная величина требований, получаемых розницей (единицы в неделю);

UOF — исходное число заказов, не выполненных производством (единицы);

RSF — исходная величина усредненных требований к производству (единицы в неделю);

DHF — минимальное запаздывание выполнения заказа производством (недели);

DUF — среднее запаздывание выполнения заказов производством из-за отсутствия на складе некоторых товаров при общем «нормальном» объеме запасов (недели);

IAF — исходный фактический запас в производстве (единицы);

AIF — постоянный коэффициент пропорциональности (недели);

CPF — исходное количество заказов в стадии оформления на заводе (единицы);

DCF — запаздывание оформления заказа на заводе (недели);

OPF — исходное количество заказов в производстве (единицы);

DPF — запаздывание, связанное с затратой времени на производство продукции (недели).

Уравнения с 13–54 по 13–73 дают исходные величины, необходимые для того, чтобы можно было начать решение уравнений с 13-1 по 13–53.

13.5.5. Параметры (константы) системы

Теперь, когда мы завершили формулирование уравнений, описывающих поведение системы, и уравнений, определяющих начальные условия, нам необходимо определить числовые значения параметров системы (величин, постоянных на протяжении каждого отдельного проигрывания модели).

Первый параметр, с которым мы встречаемся в уравнениях, является скорее параметром процесса вычисления, чем системы, как таковой. Это интервал решений DT. Интервал решений должен быть небольшой частью (менее одной шестой) отрезка времени, представленного в системе любым из запаздываний третьего порядка. Так как мы будем отражать в системе запаздывания длительностью порядка половины недели, то выберем следующий интервал решений:

DT=0,05 недели.

Поскольку в этой главе мы рассматриваем систему типичную или возможную, а не представляющую какую-либо конкретную фирму, мы не будем подробно останавливаться на выборе числовых значений параметров, а возьмем их вероятные значения с тем, чтобы позднее посмотреть, как влияет изменение значений параметров на характеристики системы.

Рассмотрим сначала запаздывания выполнения заказов розничной, оптовой торговлей и производством. Первый параметр связан с минимальным запаздыванием выполнения заказа в случае, когда необходимый товар имеется в запасе на складе. Предположим, что эти запаздывания будут порядка одной недели в каждом из трех подразделений системы:

DHR — 1,0 недели — минимальное запаздывание в розничном звене;

DHD = 1,0 недели — минимальное запаздывание в оптовой торговле;

DHF = 1,0 недели — минимальное запаздывание обработки заказа на заводе.

Необходимо также выбрать величины запаздываний выполнения заказов из-за отсутствия на складе необходимого товара DUR, DUD и DUF. При рассмотрении уравнения 13-6 мы на основе интуитивных предположений установим, что эти запаздывания пропорциональны отношению желательного запаса к фактическому. С помощью модели можно проверить влияние на систему выбора и других видов функциональной взаимосвязи и различных значений постоянной запаздывания, связанного с отсутствием на складе необходимого товара.

На рис. 13–17 показан ряд функций, из которых мы должны сделать выбор. По вертикальной оси отложена та часть общего среднего запаздывания, которая связана с отсутствием на складе необходимого товара; она выражена в долях минимального запаздывания DHR. По горизонтальной оси отложено безразмерное отношение фактического запаса к желательному. Отдельные кривые показывают различные отношения запаздывания DUR (связанного с отсутствием на складе некоторых товаров в то время, как их суммарное количество IAR находится на желательном уровне JDR) к запаздыванию DHR (минимальному времени, необходимому для оформления заказа).

Рис. 13–17. Зависимость запаздывания от отношения запасов.

На рис. 13–17 проведена жирная вертикальная линия в том месте, где фактический запас равен желательному. Точки, в которых кривые пересекают эту линию, соответствуют такому отношению

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату