вычислительную машину, как бы прообраз современных ЭВМ. К сожалению, его идеи не соответствовали техническим возможностям эпохи, и машина «не пошла».

Но проходит еще столетие, возникает и развивается электронная техника, и вычислительные машины становятся реальностью. Одновременно разрабатываются и машины нового типа, которые воспринимают все те идеи, которые были реализованы в механической технике. Постоянно совершенствующиеся машины в годы научно-технической революции приобретают новые качества. В их состав, кроме классических двигателя, передачи и орудия, входят теперь органы управляющие и регулирующие.

Развитие автоматизации влечет за собой создание полностью автоматизированных цехов, в которых некоторые операции выполняют машины автономного действия — роботы и манипуляторы. Таким образом, сам цех превращается в огромную машину, управляемую единым «мозгом», — получается та же «мельница», но уже на новых технических основаниях.

Преемственность структуры, или «генетика» машин

Генетикой в биологии называется наука о законах наследственности и изменчивости, ведущая к пониманию законов рождения новых организмов. Как уже говорилось, по аналогии можно отметить, что произведения рук человеческих, используемых в качестве орудий и инструментов, в определенной степени являются как бы продолжением органов человеческого тела. Микроскоп и телескоп наделяют человека сверхзрением, а самолет — способностью летать. Одежда выполняет некоторые функции защитного покрова, а антибиотики иногда делают то, чего не могут сделать антитела. Счетчик радиоактивного излучения снабжает человека органом чувств, аналога которому у него вообще нет. Назвать подобные инструменты «внешними» органами человека — это не просто привести прихотливую метафору, потому что все сенсорные инструменты действительно передают сведения через наши обычные органы чувств, а все механизмы и машины программируются нами либо во время работы, либо предварительно.

Таким образом, изучая машины и механизмы, мы, очевидно, должны выяснить и те законы, в соответствии с которыми они эволюционируют. Подобную параллель законам генетики мы можем найти в учении о структуре механизмов, иначе говоря, в изучении кинематического «скелета» машины. Действительно, тривиальным является положение о том, что неправильно построенный механизм работать не будет. Если же мы найдем правильные пути построения механизмов, выявим те законы, которые управляют ими, то можем тогда быть уверенными, что и механизмы, и построенная из них машина будут работать правильно.

Нам придется возвратиться к шарнирным механизмам, о которых речь шла выше. Появились они в Европе около XII в. и распространялись очень медленно, так как изготовление шарниров для того времени было делом очень трудным. Если перелистать «Театры машин», которые представляли собой сборник картинок, изредка с небольшими пояснениями, то можно найти несколько шарнирных механизмов. Четыре века назад в Испании была построена водоподъемная машина, создателем которой был королевский инженер Хуанело Турриано. Было построено еще несколько механизмов, и лишь после того, как Джеймс Уатт изобрел четырех звенник, одна из шатунных точек которого приближенно воспроизводила прямую линию, к шарнирным механизмам начали относиться более серьезно.

В середине прошлого столетия теорией шарнирных механизмов заинтересовался знаменитый русский математик Пафнутий Львович Чебышев. Он тщательно изучил особенный механизм в паровой машине, служившие для превращения прямолинейного движения поршня во вращательное движение коромысла, т. е. механизм, известный под названием параллелограмма. Эмпирические правила, которым следовал его изобретатель, смогли служить руководством для практики только до тех пор, пока не встретилась необходимость изменить форму, с изменением формы этого механизма потребовались новые правила».

Чебышев подошел к решению этого вопроса чрезвычайно остроумным путем: он построил целую серию механизмов, которые могли приближенно воспроизводить прямую линию, окружность или какой- либо иной закон преобразования движения. Экспериментально исследовав эти механизмы, он построил математическую теорию приближения функций полиномами, наименее уклоняющимися от нуля, иначе говоря, нашел способ приближенного воспроизведения линии с наименьшими отклонениями от точного их течения. Он указал на тот факт, что иногда приближенное решение оказывается точнее «точного», когда речь идет о воспроизведении определенных зависимостей механическими средствами, и нашел закон правильной структуры плоского механизма: взаимоотношение между числом звеньев и числом их сочленений — кинематических пар.

Нужно сказать, что все машины и все механизмы представляют собой сочленения пространственных тел. Великий немецкий художник и геометр Альбрехт Дюрер установил, что пространственное тело (он пользовался образом человека) можно изобразить, спроектировав его на три перпендикулярные друг другу плоскости. Французский математик Гаспар Монж в результате обобщения работ предшественников пришел к созданию начертательной геометрии, послужившей основой технического черчения — международного «языка» всех техников и инженеров.

Но на практике оказалось, что подавляющее большинство механизмов можно изображать лишь в одной проекции, которая и дает всю полноту сведений о их строении. Такие механизмы назвали плоскими в отличие от пространственных, для которых одна проекция была недостаточной, и надо было дополнительно чертить механизм во второй, а иногда и в третьей проекции. Пространственных механизмов было известно немного, древнейшими из них были винтовой и шарнирный. Поэтому вся теория механизмов создавалась на базе исследования плоских механизмов, и лишь в конце прошлого века начались очень робкие и, вообще говоря, безуспешные попытки создать теорию пространственных механизмов.

Поэтому и учение о структуре механизмов разрабатывалось на базе плоских механизмов, и лишь позже его начали распространять на пространственные механизмы. При этом механизм делили на отдельные кинематические цепи и определяли число степеней свободы всего механизма как сложной цепи.

Структурная теория Ассура. Первые работы по классификации механизмов приводили к решению лишь части поставленных задач: они отвечали на вопрос, будет ли механизмом некоторая механическая структура, но ничего не говорили о том, по каким законам можно эту структуру построить. Первым, кто занялся последовательным построением механизмов, был ученик Жуковского русский ученый-механик Леонид Владимирович Ассур.

Основной идеей ученого явилась мысль о единообразии строения механизмов, из которого вытекала идея о подобии методов их исследования. По его мнению, каким бы сложным ни был плоский механизм (мы пока говорим только о плоских механизмах) и какие бы разнообразные кинематические пары он ни включал, всегда можно найти такой шарнирный механизм, который в определенное мгновение заменит основной механизм.

Кинематика шарнирных механизмов тогда еще представляла собой некую совокупность более или менее остроумно решенных задач, не связанных единым методом. Не особенно много было известно о структуре шарнирных механизмов. Знали лишь то, что в составе шарнирных механизмов можно обнаружить двух-, трех- и четырехповодковые группы. Было выяснено принципиальное родство между плоскими механизмами с шарниром и механизмами с ползунком (в поршневом насосе и паровой машине). Большинство известных механизмов имело в своем составе двухповодковые группы, рассчитывать такие механизмы умели. Что же касается трех- и четырехповодковых групп, то они появлялись в составе механизмов «случайно» и нарушали весь порядок расчета.

Чтобы разложить механизм на элементарные составляющие, следовало решить вопросы: какую структуру можно считать элементарной, какую форму должен иметь элементарный механизм, какие неделимые далее части должны войти в его состав.

В последней четверти прошлого века немецкий ученый-машиностроитель Франц Рело предложил теорию кинематических пар, показав, что составляющими всех механизмов являются материальные тела — звенья и их сочленения—кинематические пары. Теория кинематических пар дала многое для понимания

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату