истощаются через 6-9секунд.
Оптимальная тренировка креатинфосфатной системы
Основной целью развития креатинфосфатной системы является увеличение содержания креатинфосфата в мышцах. Это достигается совершением тренировочной работы высокой интенсивности в 80–90 % от максимальной. Продолжительность выполняемых упражнений очень короткая от 5-10 до 20 секунд, а интервалы между повторным выполнением нагрузки должны быть достаточно продолжительными (от 1 мин. и более). Так как такие виды тренировок осуществляются с высокой ЧСС, то они могут быть рекомендованы только спортсменам с достаточной степенью тренированности сердечно-сосудистой системы, и, соответственно, их нежелательно использовать у спортсменов старших возрастных групп.
Второе
Энергетический обмен при длительном выполнении упражнений в основном удел аэробных реакций, но анаэробные процессы тоже играют немалую роль. Например, переход из состояния покоя к действию (движению) всегда связан с усилением кислородного запроса. Но органы кислородного снабжения «тяжелы на подъем», они не могут быстро включиться в работу с максимальной интенсивностью. Здесь и выручает способность работать в условиях кислородной задолженности, так как накопить кислорода в организме можно немного: всего 400– 500 мл в легких, 900-1000 – в крови, 300–400 – в мышцах и межтканевой жидкости. Увы, таких запасов хватает лишь на несколько секунд упражнений. (В организме имеется также механизм накопления кислорода в виде супероксидов или перекисных соединений. Этот механизм, вероятнее всего, используют йоги).
При физической работе, при воздействии патогенных факторов организму для сохранения гомеостаза необходимо затратить определенную дополнительную энергию. Аэробный процесс, как уже отмечалось, является самым экономичным (если сравнить с креатин-фосфатным, то в 38 раз), однако, он является достаточно медленным и не может обеспечить достаточным количеством энергии. В таких случаях в энергообеспечении организма повышается роль углеводов. Они расщепляются первыми, когда возникает необходимость в срочном образовании энергии. Например, при работе максимальной и субмаксимальной мощности около 70–90 % всей расходуемой энергии обеспечивается за счет гликолиза. Другими словами для более быстрого получения энергии организм усиливает гликолитический тип энергообмена, так как он более быстрый, чем кислородный и значительно продолжительнее креатин-фосфатного.
Его еще называют анаэробная гликолитическая система, поскольку молекулы сахара расщепляются без участия кислорода. Молекулы сахара, точнее говоря молекулы глюкозы, расщепляются не полностью, а лишь до образования молочной кислоты. Мышца фактически содержит не молекулы молочной кислоты, а отрицательно заряженный ион лактата (LА-) и положительно заряженный ион водорода (Н+), а также энергию, необходимую для образования АТФ из АДФ и фосфата: Глюкоза = LА- + Н+ + энергия
Оба этих иона могут рассматриваться как ненужные, служащие помехой для мышц. Они также могут попасть из мышцы в кровь даже во время работы мышцы, если эта работа будет достаточно продолжительной.
Принято считать, что мышца прибегает к анаэробной лактатной системе в том случае, когда интенсивность выполняемой работы такова, что запрос АТФ в минуту будет превышать количество АТФ, образуемое за счет аэробной системы.
Рис. 1
Анаэробная лактатная система важна в беге на дистанции 400 м, 800 м и даже на более длинную дистанцию 1500 м. В дальнейшем мы увидим, что здесь обычно участвует не вся мышца, а лишь часть ее волокон.
Зависимость анаэробных возможностей организма (анаэробная производительность) от ряда факторов отражена на
Третье
На практике – это высокий темп, хлесткие, сильные и точные удары, быстрое восстановление.
Многие люди не знают, что наш организм и в состоянии покоя вырабатывает очень небольшое количество молочной кислоты. Такие небольшие количества молочной кислоты могут быть легко удалены из организма, однако они служат объяснением того, почему всегда имеются следы лактата в крови у человека.
Можно сказать, что количество молочной кислоты, образуемой в секунду мышцами и выделяемого в кровь увеличивается, когда когда мы увеличиваем интенсивность нагрузки, например, скорость или вес отягощения. Вплоть до определенной интенсивности нагрузки, организм может выделять в кровь всю молочную кислоту. Обычно она поглощается другими мышцами или другими мышечными волокнами той же самой мышцы, которая вырабатывает эту субстанцию, а также сердцем, печенью или почками. Таким образом, уровень лактата в крови всегда остается близким к базальной величине.
У тренированных к длительным нагрузкам людей образуется довольно большое количество лактата, но их организм способен поглотить большую часть его.
Молочная кислота вырабатывается мышцами и затем выделяется в кровь, где можно измерить ее концентрацию. Она присутствует как в мышечных волокнах, так и в крови в виде двух ионов, соответственно одной молекулы и одного электрически заряженного атома. Первый ион – это отрицательно заряженный ион лактата (LА-). Уровень этой субстанции в крови может быть, в частности, измерен. Второй ион – это положительно заряженный ион водорода (Н-). Именно второй ион вызывает большой дискомфорт, т. к. повышает уровень молочной кислоты в мышцах. Более того, он даже может нарушить надлежащую работу мышц. Уменьшение работоспособности мышц мы ощущаем после бега с высокой скоростью. Оно вызвано, большей частью, как раз повышением уровня молочной кислоты. Когда этот уровень превысит определенную величину, в мышечных волокнах происходят разные изменения (например, изменение митохондрий), которые могут сохраняться в течение нескольких часов (даже дней у индивидов, не привыкших выполнять нагрузки, связанные с образованием молочной кислоты). Восстановительные механизмы организма человека постепенно реконструируют состояние до нагрузки, в ряде случаев состояние, которое позволяет индивиду переносить высокий уровень молочной кислоты в крови.
Заметим, что ионы водорода служат помехой не только мышцам, но и мозгу как только они поступят в кровь, они достигают и ликвора (жидкость, окружающая мозг) Именно поэтому образование большого количества молочной кислоты негативно влияет на ясность ума, координацию и рефлекторные реакции. Все эти эффекты могут быть отчасти вызваны аммиаком, который также образуется в мышцах. Т. е. молочная кислота представляет собой, во многих отношениях, ненужную субстанцию, мешающую организму. Тем не менее, ее молекулы содержат энергию, поэтому важно, чтобы рабочие мышцы учились использовать этот источник энергии.
Уровень лактата в крови
Ниже перечислены общепринятые показатели уровня лактата в крови. Заметьте, что при использовании разных методов измерения могут иметься незначительные расхождения в полученных показателях.
• около 1 ммоль/л: в состоянии покоя и при беге в медленном темпе;
• около 2 ммоль/л: во время марафонского бега в постоянном темпе или со скоростью на уровне аэробного порога;
• около 4 ммоль/л: у большинства бегунов это будет показатель, измеренный при беге со скоростью на уровне анаэробного порога или же при беге со скоростью, которую спортсмен в состоянии поддерживать в течение одного часа при беге в постоянном темпе по ровной поверхности;
• около 18–20 ммоль/л: у спортсменов высокого класса после достижения лучшего личного результата на дистанции 400 м или 800 м; у элитных спортсменов этот показатель может быть больше 25 ммоль/л;
Другой надежный тест анаэробной производительности организма – максимальный кислородный долг. Одним из первых определил этот показатель, равный 18,7 л, английский физиолог Хилл. Последующие исследования позволили получить еще большую величину – 20–23 л. Так же, как и в случае с МПК, подобный кислородный долг наблюдается только у спортсменов высокого класса. У не занимающихся спортом или активной физкультурой он не превышает 4–7 л или 60-100 мг на 1 кг веса.
Четвертое