– Нет ничего, касающегося молока, чего бы я не знал.

Но вот однажды он был поставлен в тупик двумя леди, которые попросили его налить им по две кварты молока в пяти– и четырехквартовые кастрюли. У Джона же были только два полных бидона молока по 10 галлонов в каждом. Каким образом ему все же удалось отмерить каждой леди по две кварты молока?

Следует заметить, что для того, чтобы отмерить нужные две кварты молока, пользуясь только двумя кастрюлями и двумя бидонами, не требуется ничего, кроме сообразительности.

141

Как поезда сумеют разойтись?

Вот одна практическая задача тех дней, когда железные дороги находились в состоянии младенчества и не было еще двухколейных путей, поворотных платформ и автоматических стрелок. Леди, снабдившая меня сюжетом этой головоломки, основывалась на личном опыте, приобретенном, по ее собственному признанию, «некогда».

– Однажды, прибыв на разъезд, – рассказывала она, – где обычно расходятся поезда, мы узнали, что труба у нашего паровоза перегрелась и находится при последнем издыхании, а починить ее в обозримое время нет никакой надежды.

На рисунке вы видите экспресс с вышедшим из строя паровозом и приближающийся с противоположной стороны состав из Вэйбека, который во что бы то ни стало должен разъехаться с неподвижным поездом.

Участки разъезда, обозначенные буквами А, B,C и D, могут принять одновременно только один вагон или паровоз. Разумеется, вышедший из строя паровоз не может двигаться собственными силами, его следует тянуть или толкать, как если бы он был вагоном. Вагоны можно перевозить по одному или вместе, сцепив их в любом количестве, причем цеплять к паровозу их можно как спереди, так и сзади.

Задача состоит в том, чтобы помочь поезду из Вэйбека разъехаться с экспрессом наиболее рациональным способом, оставив в итоге экспресс на прямолинейном пути, причем так, чтобы паровоз и вагоны оказались в первоначальном порядке и смотрели в первоначальном направлении. Под «наиболее рациональным способом» мы понимаем наименьшее число изменений в направлении движения паровоза из Вэйбека.

Вам легче будет решить головоломку, нарисовав участок пути на листе бумаги и двигая по нему вырезанные из картона фишки, изображающие вагоны и паровозы.

142

Цепь

У фермера было 6 кусков цепи по 5 звеньев в каждом, из которых он хотел сделать одну замкнутую цепь, состоящую из 30 звеньев.

Если разрезать одно звено стоит 8 центов, а вновь соединить его – 18 центов и если новую замкнутую цепь можно купить за полтора доллара, то сколько денег может сэкономить фермер?

143

Разрежьте пряник на две части, из которых можно сделать квадрат

Владелица кондитерской показывает детям большой пряник, разделенный на маленькие квадратики, которые продаются по 1 пенни за штуку. Сможете ли вы, не нарушая квадратиков, разделить пряник на две части, из которых затем удалось бы сложить квадрат 8x8?

[Лойд приводит здесь и вторую задачу, но она не совсем четко сформулирована, а отсутствие на нее ответа не позволяет до конца понять вопрос с помощью решения. Я могу лишь предположить, что Лойд просил своих читателей вырезать из пряника, не нарушая квадратиков, две возможно большие части одинакового размера и формы. В любом случае это интересная задача. Мы считаем, что две части имеют одинаковые форму и размер, если перевернув одну из них обратной стороной кверху и наложив на вторую часть, мы получим их точное совпадение. – M. L.]

144

Техасские ковбои

Три техасских ковбоя, встретившись на большой дороге, стали торговаться.

Вот и говорит Хэнк Джиму:

– Я дам тебе шесть свиней за лошадь; тогда в твоем стаде будет вдвое больше голов, чем в моем.

А Дьюк говорит Хэнку:

– Я дам тебе четырнадцать овец за лошадь; тогда у тебя будет втрое больше голов, чем у меня.

А Джим говорит Дьюку:

– Я дам тебе четыре коровы за лошадь; тогда у тебя будет в шесть раз больше голов, чем у меня.

Зная эти любопытные факты, не могли бы вы сказать, сколько животных было в каждом из трех стад?

145

Том, сын трубача

Герой одной из сказок Матушки-Гусыни Том, сын трубача, решил украсть свинью. Когда он побежал за свиньей, то находился в 250 ярдах к югу от нее. И свинья, и Том побежали одновременно с постоянными скоростями. Свинья бежит в восточном направлении. Вместо того чтобы бежать по прямой на север, Том сгоряча бежит так, что в каждый момент движется точно на свинью.

Предположим, что Том бежит в 1 1/3 раза быстрее, чем свинья. Тогда скажите, как далеко убежала свинья, прежде чем ее удалось схватить? Простое правило, позволяющее решать задачи такого типа, основано на элементарной арифметике, однако оно может оказаться новым для многих любителей головоломок.

146

Сколько лет Бидди?

Бидди была очень чувствительна ко всему, что касалось ее возраста. В последние сорок лет на все вопросы, касающиеся срока ее пребывания на грешной земле, она неизменно отвечала следующими строками:

Трижды семь и семью пятьТы к моим годам прибавь.Это так же превзойдетШестью девять и четыре,Как превысит в этом миреДважды сложенный мой годДва десятка в свой черед.

Эти незатейливые стишки, без сомнения, говорили правду, когда Бидди прочитала их в первый раз. Но не могли бы вы сказать, сколько лет Бидди в настоящее время?

147

Подсчитайте цыплят

– Ну, Мэри, – сказал фермер Джонс своей жене, – если бы мы продали семьдесят пять цыплят, как предлагаю я, то корма хватило бы на двадцать дней дольше, а если бы мы купили лишнюю сотню цыплят, как это предлагаешь ты, то корм кончился бы на пятнадцать дней раньше.

– Скажи-ка, Джо, – озабоченно спросила жена, а сколько же у нас сейчас цыплят?

Вот в чем задача. Сколько у них было цыплят?

148

Сколько пролетит мячик?

Если уронить мячик с падающей Пизанской башни на высоте 179 футов над землей и если при каждом отскоке этот мячик будет подниматься ровно на 1/10 предыдущей высоты, то какое расстояние он проделает, прежде чем ляжет на землю?

149

Найдите лучший путь для Клэнси

Вот одна задача, которая ставит Клэнси в тупик с тех самых пор, как он пришел служить в полицию. Клэнси патрулирует 49 домов, которые вы видите на плане, начиная и заканчивая свой путь в точке возле конца его дубинки. Прежде чем сделать поворот, полицейский должен пройти нечетное число домов на любом проспекте или улице, кроме того, он не имеет права проходить дважды по одному и тому же участку пути.

Пунктирная линия показывает путь, которым Клэнси следует обычно. При этом он проходит мимо 28 «белых» домов. Не могли бы вы помочь Клэнси найти путь, который удовлетворял бы всем нужным

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату