Эта история, без сомнения, сильно преувеличена, но не могли бы наши читатели сказать, какое расстояние преодолел незадачливый исследователь Арктики во время этого памятного путешествия?
253

«Однажды мне довелось стать свидетелем смертельной схватки двух козлов, – пишет профессор Блюмгартен, – которая оказалась связанной с одной любопытной математической задачей. У моего соседа был козел, который в течение нескольких сезонов слыл общепризнанным чемпионом окрестных скал; потом у кого-то еще в округе появился козел, который был на 3 фунта тяжелее соседского. Соседский козел весил 54 фунта, а новый – 57.
Какое-то время козлы гармонично сосуществовали, Но вот однажды более легкий козел, встав на вершине холма, издал угрожающее блеяние, вызывая соперника на бой. Соперник бросился вверх по холму, а задира ринулся ему навстречу. Как это ни печально, при столкновении оба козла погибли.
Джордж Аберкромби, который написал внушительную работу о козлиных боях, говорит: «В результате повторных экспериментов я выяснил, что сила удара, соответствующая количеству движения, которое развивают 30 фунтов, падающих с высоты в 20 футов, как раз достаточна, чтобы проломить череп козла и тем самым привести к летальному исходу».
Допустим, что это так и есть. Тогда чему должна равняться минимальная относительная скорость двух наших козлов, достаточная для того, чтобы они проломили черепа друг другу?»
254

Лучшее средство для спасения при пожаре – перекинутая через блок веревка с большими корзинами по концам. Когда одна корзина опускается, другая поднимается. Поместив какой-то предмет в одну из корзин в качестве противовеса, более тяжелый предмет можно затем спустить вниз в другой корзине. Автор этого патентованного изобретения считает, что такое приспособление необходимо установить с внешней стороны каждой спальни во всем мире. В одном из наших отелей попробовали испытать его, однако нашлись постояльцы, которые не преминули воспользоваться им для того, чтобы покидать отель ночью вместе с имуществом, не заплатив по счету. Естественно, после этого приспособление перестало пользоваться популярностью у владельцев отелей.
На рисунке показано это приспособление, приделанное у окна фешенебельного летнего отеля. Если одна из корзин пуста, то в другой можно безопасно спустить предмет весом не более 30 фунтов. Если же обе корзины нагружены, то безопасная разница в весе между ними также равна 30 фунтам.
Когда однажды ночью в отеле вспыхнул пожар, все постояльцы, за исключением ночного сторожа и его семьи, благополучно спаслись. Последних не удалось разбудить до тех пор, пока все пути к спасению, кроме патентованного приспособления, не оказались отрезанными. Сторож весил 90, его жена – 210, собака – 60 и младенец – 30 фунтов.
Каждая корзина достаточно велика, чтобы вместить всех четверых, но никаких дополнительных грузов использовать нельзя – в спуске участвуют только сторож, жена, собака и младенец. Предполагается, что ни собака, ни младенец не могут влезть в корзину или выбраться из нее без посторонней помощи. Каким образом все четверо смогут поскорее спуститься вниз?
255
В одной из басен Эзопа рассказывается о честолюбивом орле, который решил долететь до солнца. Каждое утро, когда солнце всходило на востоке, орел летел по направлению к нему до полудня, затем, когда солнце начинало клониться к западу, орел, продолжая свою бессмысленную погоню, тоже поворачивал на запад. В тот момент, когда солнце исчезало за горизонтом, орел оказывался как раз в том месте, откуда утром начинал свой полет.
Эта поучительная история обнаруживает некоторые нелады Эзопа с математикой. В первой половине дня орел и солнце движутся навстречу друг другу. Послеполуденная же часть пути окажется длиннее, и орел с каждым днем будет перемещаться все дальше к западу.
Допустим, что орел стартует с купола Капитолия в Вашингтоне, округ Колумбия, где Земля имеет в окружности 19500 миль. Орел летит на некоторой высоте над землей, что не влияет существенно на это расстояние, и каждый день он кончает свой полет на 500 миль западнее точки, из которой он отправился утром.
Сколько суток пройдет в Капитолии с момента, когда орел улетел, до момента, когда он, облетев земной шар в западном направлении по кругу, вновь сядет на прежнее место?
256

Вы видите на рисунке, как король Страны Головоломок и принцесса Загадка исследуют тайны знаменитой печати царя Соломона, изображенной на его гробнице. Король пытается подсчитать, сколько на этом рисунке можно обнаружить различных равносторонних треугольников. А как полагаете вы?
257

Юный заяц- спортсмен и черепаха бегут в противоположных направлениях по круговой дорожке, диаметр которой 100 ярдов. Они начали свой забег в одном и том же месте, но заяц не бежал до тех пор, пока черепаха не прошла 1/8 часть всей дистанции (то есть окружности данного круга). Заяц придерживается столь невысокого мнения о спортивных качествах своей соперницы, что он лениво бежит, пощипывая травку, до тех пор, пока не встречается с черепахой. К этому времени он проходит 1/6 всей дистанции. Во сколько раз быстрее, чем до сих пор, придется теперь бежать зайцу, чтобы он выиграл этот забег?
258
Эта хорошенькая швейцарка очень искусна в решении геометрических головоломок на разрезание. Она сумела найти способ, с помощью которого кусок красных обоев, что находится в ее правой руке, можно разрезать на две части, чтобы сложить из них швейцарский флаг. Вы видите его в левой руке девушки, белый крест в центре флага образует дыра. Разрез должен идти вдоль прямых, указанных на обоях.
Кроме того, швейцарка просит вас разрезать флаг, который она держит в левой руке, на две части, из которых можно было бы сложить прямоугольник размером 5x6.
259

Однажды я повстречал электрика, который сделал что-то вроде распределительного щита и хотел определить наиболее экономный способ протянуть хороший дорогой провод через все его контакты. Щит содержал несколько сот контактов, но я хочу познакомить читателей с самой идеей их соединения, а потому ограничусь участком 8x8, содержащим 64 контакта, который и показан на рисунке.
Задача состоит в том, чтобы определить кратчайшую длину провода, который должен из точки
Предположим, что для соединения точки
260

В старой задаче, которую можно найти во многих сборниках головоломок, речь идет об армейской колонне длиной в 50 миль. Пока колонна движется вперед с постоянной скоростью, курьер скачет из арьергарда в авангард, чтобы передать пакет, а затем возвращается обратно. Назад он прибывает как раз в тот момент, когда колонна прошла 50 миль. Какое расстояние проделал курьер?
Если бы колонна стояла на месте, то, очевидно, он бы проделал 50 миль туда и 50 миль, обратно. Но