кумулятивной гранаты. Радиолокационное сечение первой очень мало, поэтому защита пропускает ее. Попав в танк, ЭМБП временно ослепляет защиту, обеспечивая прорыв кумулятивной гранаты к броне. Требуемый радиус ослепления — всего 2–3 метра: антенна радиолокатора расположена на башне танка, и если промах больше, то и летящая вслед кумулятивная граната не попадет в цель (стрелок «промазал»). Главным требованием к ЭМБП — вспомогательному боеприпасу — были малые размеры: основной объем одноразового гранатомета отводился под гранату, пробивающую танковую броню после преодоления САЗ. Поэтому список кандидатов был короток: ВМГЧ малого диаметра, да пара «новичков».

…Идея, положенная в основу ферромагнитного генератора частоты (ФМГЧ, рис. 4.50), состояла в прямом преобразовании содержащейся в ферромагнетике энергии в энергию РЧЭМИ.

Рис. 4.50 Общий вид и схема ферромагнитного генератора частоты (ФМГЧ). Мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей магнит 2. К обмотке подключен конденсатор 3 и колебания в высоко добротном контуре приводят к смене полярности тока, направление поля внутри магнита меняется и периодически состояние вещества за фронтом ударной волны становится существенно неравновесным, что приводит к излучению энергии. Таким образом, чередуются циклы «подкачки» энергии в контур и ее излучения. Спектр РЧЭМИ (справа) такого источника очень сложен и меняется с каждой «излучательной» полуволной тока

Но излучение может и не «выйти», а превратиться в ненужное тепло, если проводимость ферромагнетика высока, как у пластин железа в ФМГ. Поэтому в ФМГЧ рабочим телом (РТ) служит не железо, а магниты, изготовленные по «порошковой» технологии, такие как FeNdB — они проводят плохо и «выпускают» поле из примерно сантиметрового слоя. Поделив размер деполяризуемого структурного элемента (микроны) на скорость ударной волны (5 км/с), получим грубую оценку характерного времени элементарного акта излучения (изменения магнитного момента), а значит, и длины волны — дециметр. На самом же деле, спектр излучения очень сложен: он меняется с каждой последующей «излучательной» полуволной. Ударная волна служит лишь спусковым механизмом, а в излучение преобразуется небольшая часть содержащейся в постоянном магните энергии. Мощность и энергия РЧЭМИ, генерируемого ФМГЧ — почти на три порядка меньше, чем у источников с кумуляцией магнитного поля [91].

Память читателей, наверняка верещит: «Про «точку Кюри и 100 градусов» — уже было…» Правильно, в строении постоянных магнитов и пьезоэлектриков есть много общего и грубой методической ошибкой было бы не допустить к «соревнованиям» и аналог ФМГЧ — пьезоэлектрический генератор частоты (ПЭГЧ, рис. 4.51).

Рис. 4.51 Схема пьезоэлектрического генератора частоты (слева). В таком генераторе заряд взрывчатого вещества (ВВ) 1 состоит из двух конусов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись (иначе — произойдет пробой), переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток заряжает последовательно соединенные конденсаторы: образованный металлизованными поверхностями на РТ и обычный 4, подсоединенный к обмотке 5 для получения нужной частоты колебаний в контуре. Другой вывод обмотки подключен к обкладке РТ. Через промежуток времени, определяемый емкостью и индуктивностью контура, ток, а значит, и поле в РТ меняют полярность (осциллограмма справа). Полуволны тока одной полярности сравнительно велики (происходит «подкачка» энергии в контур за счет деполяризации), а другой — значительно меньше из-за отбора энергии, том числе и на излучение (из вещества, ставшего неравновесным в поле изменившегося направления). Взрыв используется лишь как спусковой механизм, но его энергия на пять порядков превышает заключенную в веществе рабочего тела

Задания военных на разработку ФМГЧ и ПЭГЧ не было, но не покидало предчувствие, что эти идеи не пропадут всуе. Как у ПЭГЧ, так и у ФМГЧ мощности доставало только для создания перегрузок в электронных цепях целей, да и то кратковременных (сотни миллисекунд). Но для временного ослепления САЗ хватило и этого…

Прорывы кумулятивных гранат (рис. 4.52) регистрировались при срабатываниях всех без исключения типов излучателей. Разработчики защиты пытались (правда, довольно вяло) оспорить результаты, но все, чего они добились, был переход к опытам с боевой стрельбой, и здесь спорить стало трудно: САЗ перехватила все летящие на танк гранаты в отсутствие воздействия РЧЭМИ, но «пропустила» те, подлет которых сопровождался подрывом макетов ЭМБП.

Рис. 4.52 Пример эффекта временного ослепления автоматической миллиметровой РЛС наведения САЗ защиты танка при перехвате ракеты. Левая осциллограмма — нормальный сигнал от блока определения дальности до цели. Правая осциллограмма — после разрыва 30-мм ЭМБП в нескольких метрах от РЛС под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент взрыва ЭМБП показан стрелкой

Можно ли повысить чувствительность САЗ, чтобы она перехватила и ЭМБП? Можно, но это не поможет танку: вспомогательную гранату уничтожат на подлете, а кумулятивная все равно поразит машину — защите уже не останется времени для повторной реакции. К тому же, при повышенной чувствительности САЗ, быстро исчерпывается ее потенциал: немногие оборонительные выстрелы расходуются на отражение ложных угроз (пролетающих осколков, обломков и даже птиц).

Это был важный результат. На демонстрацию были приглашены В. Базилевич (один из главных конструкторов «Базальта») и В. Житников (заместитель начальника управления ГРАУ). ЭМБП не подвели и на показе, обеспечив прорыв всех гранат, подлетавших к танку с самых разных курсовых углов, в том числе при разрыве ЭМБП на корме танка (этого, вообще-то не требовалось). Тем вечером запасам спирта испытателей пришел конец. Причины для ликования, действительно, были.

Во-первых, ФМГЧ и ПЭГЧ идеально вписывались в те габариты, которые «Базальт» мог выделить в гранатомете под вспомогательную гранату. Габариты излучателей можно было и еще уменьшить, но это не имело смысла, потому что их диаметры и так были меньшими, чем у подходящих по характеристикам взрывателей. Во-вторых, для вспомогательной гранаты требовался контактный подрыв, который мог обеспечить производившийся с 50-х годов отработанный и надежный взрыватель М-6 к минометным боеприпасам. В-третьих, перечень целей для нового оружия исчерпывался танками с САЗ, и эффективность ЭМБП при стрельбе по такой цели была продемонстрирована абсолютная.

В «пожарном» порядке была разработана малокалиберная (42 мм) реактивная граната «Атропус» и два варианта боевых частей к ней: на основе ФМГЧ и ПЭГЧ (ВМГЧ «отсеяли», поскольку он сложнее и дороже). Двигатель взяли от уже находящейся на вооружении ракеты.

…Новогодние праздники еще не закончились, когда меня 02 января 1995 г. вызвали в ГРАУ, на очередное совещание. Началась, причем неудачно, операция в Чечне и военное руководство пыталось пожарными мерами компенсировать изъяны в боевой подготовке войск, дав указание форсировать их оснащение новыми образцами оружия, не выделив на это финансирования и не очень поразмыслив над тем, какие из них действительно будут полезны в такой операции. Нелепость ситуации понимали и в ГРАУ, но приказ оставался приказом. Так или иначе, В. Базилевич дал обещание «за счет внутренних резервов» обеспечить производство реактивных гранат: «Атропус» и другой, крупного калибра — для борьбы с минами. Позиция Базилевича была достаточно ясна в том, что касалось «Атропуса»: это был логичный шаг к созданию гранатомета нового поколения, который предстояло разработать и без понуканий. С «противоминной» гранатой все было сложнее: противник устанавливал нажимные и натяжные мины, а кроме них — самодельные ловушки и диверсионные фугасы. Против мин с механическими взрывателями

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

4

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату