shortterm memory and so I could remember all kinds of crazy things like building 90-207, vat number so-and-so, and so forth.

I went to my room that night, and went through the whole thing, explained where all the dangers were, and what you would have to do to fix this. It’s rather easy. You put cadmium in solutions to absorb the neutrons in the water, and you separate the boxes so they are not too dense, according to certain rules.

The next day there was going to be a big meeting. I forgot to say that before I left Los Alamos Oppenheimer said to me, “Now, the following people are technically able down there at Oak Ridge: Mr. Julian Webb, Mr. So-and-so, and so on. I want you to make sure that these people are at the meeting, that you tell them how the thing can be made safe, so that they really understand.

I said, “What if they’re not at the meeting? What am I supposed to do?”

He said, “Then you should say: Los Alamos cannot accept the responsibility for the safety of the Oak Ridge plant unless—!”

I said, “You mean me, little Richard, is going to go in there and say—?”

He said, “Yes, little Richard, you go and do that.”

I really grew up fast!

When I arrived, sure enough, the big shots in the company and the technical people that I wanted were there, and the generals and everyone who was interested in this very serious problem. That was good because the plant would have blown up if nobody had paid attention to this problem.

There was a Lieutenant Zumwalt who took care of me. He told me that the colonel said I shouldn’t tell them how the neutrons work and all the details because we want to keep things separate, so just tell them what to do to keep it safe.

I said, “In my opinion it is impossible for them to obey a bunch of rules unless they understand how it works. It’s my opinion that it’s only going to work if I tell them, and Los Alamos cannot accept the responsibility for the safety of the Oak Ridge plant unless they are fully informed as to how it works!

It was great. The lieutenant takes me to the colonel and repeats my remark. The colonel says, “Just five minutes,” and then he goes to the window and he stops and thinks. That’s what they’re very good at—making decisions. I thought it was very remarkable how a problem of whether or not information as to how the bomb works should be in the Oak Ridge plant had to be decided and could be decided in five minutes. So I have a great deal of respect for these military guys, because I never can decide anything very important in any length of time at all.

In five minutes he said, “All right, Mr. Feynman, go ahead.”

I sat down and I told them all about neutrons, how they worked, da da, ta ta ta, there are too many neutrons together, you’ve got to keep the material apart, cadmium absorbs, and slow neutrons are more effective than fast neutrons, and yak yak—all of which was elementary stuff at Los Alamos, but they had never heard of any of it, so I appeared to be a tremendous genius to them.

The result was that they decided to set up little groups to make their own calculations to learn how to do it. They started to redesign plants, and the designers of the plants were there, the construction designers, and engineers, and chemical engineers for the new plant that was going to handle the separated material.

They told me to come back in a few months, so I came back when the engineers had finished the design of the plant. Now it was for me to look at the plant.

How do you look at a plant that isn’t built yet? I don’t know. Lieutenant Zumwalt, who was always coming around with me because I had to have an escort everywhere, takes me into this room where there are these two engineers and a loooooong table covered with a stack of blueprints representing the various floors of the proposed plant.

I took mechanical drawing when I was in school, but I am not good at reading blueprints. So they unroll the stack of blueprints and start to explain it to me, thinking I am a genius. Now, one of the things they had to avoid in the plant was accumulation. They had problems like when there’s an evaporator working, which is trying to accumulate the stuff, if the valve gets stuck or something like that and too much stuff accumulates, it’ll explode. So they explained to me that this plant is designed so that if any one valve gets stuck nothing will happen. It needs at least two valves everywhere.

Then they explain how it works. The carbon tetrachloride comes in here, the uranium nitrate from here comes in here, it goes up and down, it goes up through the floor, comes up through the pipes, coming up from the second floor, bluuuuurp—going through the stack of blueprints, downup-down-up, talking very fast, explaining the very very complicated chemical plant.

I’m completely dazed. Worse, I don’t know what the symbols on the blueprint mean! There is some kind of a thing that at first I think is a window. It’s a square with a little cross in the middle, all over the damn place. I think it’s a window, but no, it can’t be a window, because it isn’t always at the edge. I want to ask them what it is.

You must have been in a situation like this when you didn’t ask them right away. Right away it would have been OK. But now they’ve been talking a little bit too long. You hesitated too long. If you ask them now they’ll say “What are you wasting my time all this time for?”

What am I going to do? I get an idea. Maybe it’s a valve.

I take my finger and I put it down on one of the mysterious little crosses in the middle of one of the blueprints on page three, and I say “What happens if this valve gets stuck?”—figuring they’re going to say “That’s not a valve, sir, that’s a window.”

So one looks at the other and says, “Well, if that valve gets stuck—” and he goes up and down on the blueprint, up and down, the other guy goes up and down, back and forth, back and forth, and they both look at each other. They turn around to me and they open their mouths like astonished fish and say “You’re absolutely right, sir.”

So they rolled up the blueprints and away they went and we walked out. And Mr. Zumwalt, who had been following me all the way through, said, “You’re a genius. I got the idea you were a genius when you went through the plant once and you could tell them about evaporator C-21 in building 90-207 the next morning,” he says, “but what you have just done is so fantastic I want to know how, how do you do that?”

I told him you try to find out whether it’s a valve or not.

Another kind of problem I worked on was this. We had to do lots of calculations, and we did them on Marchant calculating machines. By the way, just to give you an idea of what Los Alamos was like: We had these Marchant computers—hand calculators with numbers. You push them, and they multiply, divide, add, and so on, but not easy like they do now. They were mechanical gadgets, failing often, and they had to be sent back to the factory to be repaired. Pretty soon you were running out of machines. A few of us started to take the covers off. (We weren’t supposed to. The rules read: “You take the covers off, we cannot be responsible …”) So we took the covers off and we got a nice series of lessons on how to fix them, and we got better and better at it as we got more and more elaborate repairs. When we got something too complicated, we sent it back to the factory but we’d do the easy ones and kept the things going. I ended up doing all the computers and there was a guy in the machine shop who took care of typewriters.

Anyway we decided that the big problem—which was to figure out exactly what happened during the bomb’s implosion, so you can figure out exactly how much energy was released and so on—required much more calculating than we were capable of. A clever fellow by the name of Stanley Frankel realized that it could possibly be done on IBM machines. The IBM company had machines for business purposes, adding machines called tabulators for listing sums, and a multiplier that you put cards in and it would take two numbers from a card and multiply them. There were also collators and sorters and so on.

So Frankel figured out a nice program. If we got enough of these machines in a room, we could take the cards and put them through a cycle. Everybody who does numerical calculations now knows exactly what I’m talking about, but this was kind of a new thing then—mass production with machines. We had done things like this on adding machines. Usually you go one step across, doing everything yourself. But this was different—where you go first to the adder, then to the multiplier, then to the adder, and so on. So Frankel designed this system and ordered the machines from the IBM company because we realized it was a good way of solving our problems.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату