Умозаключение по «логическому квадрату» – это определение истинности или ложности одного суждения из истинности или ложности другого.
28. ДЕДУКТИВНОЕ УМОЗАКЛЮЧЕНИЕ И ЕГО ВИДЫ
Цель силлогизма состоит в получении из посылок нового суждения, или вывода. Пример силлогизма. Все жидкости упруги. Вода – жидкость. Вода упруга.
Как видно из примера, средний термин входит в каждую из посылок, но не входит в заключение силлогизма. Это происходит потому, что цель силлогизма состоит в выяснении отношения между двумя понятиями.
Силлогизмы могут иметь различные посылки, и потому выводы в них могут стоять в зависимости от различных правил. Логика устанавливает все эти правила и изучает все разновидности силлогизмов.
Первая группа силлогизмов – простые категорические силлогизмы. К ним относятся заключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.
Рассматривая простые категорические силлогизмы, можно заметить, что расположения понятий, или терминов, в посылках данных силлогизмов могут быть различными.
В каждом силлогизме должно быть три термина: меньший, больший и средний.
Меньшим термином является субъект заключения. Большим термином именуется предикат заключения. Термин, который присутствует в посылках, но отсутствует в заключениях, называется средним.
Категорические силлогизмы в мышлении встречаются весьма часто. Для того чтобы получить истинное заключение, необходимо брать истинные посылки и соблюдать правила категорического силлогизма.
Выделяют следующие правила категорического силлогизма:
1) в каждом силлогизме должно быть только три термина;
2) средний термин должен быть распределен по крайней мере в одной из посылок;
3) термин распределен в заключении, если он распределен в посылке;
4) из двух отрицательных посылок нельзя сделать никакого заключения;
5) если одна из посылок отрицательна, то и заключение должно быть отрицательным;
6) из двух частных посылок нельзя сделать заключение;
7) если одна из посылок частная, то заключение должно быть частным;
8) если большая посылка – частная, а меньшая – отрицательная, то вывод невозможен.
Данные правила не должны нарушаться ни в одном силлогизме. Всякое нарушение их уничтожает возможность вывода, ведет к ошибочному выводу.
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Например: «Щедрость заслуживает похвалы, как и всякая добродетель».
Сложным силлогизмом (полисиллогизмом) являются два или несколько простых категорических силлогизмов, связанных друг с другом таким образом, что заключение одного из них становится посылкой другого. Различают прогрессивные и регрессивные полисиллогизмы.
В прогрессивном силлогизме заключение предшествующего силлогизма становится большей посылкой последующего силлогизма.
Регрессивный силлогизм – это такой сложный силлогизм, в котором заключение предшествующего силлогизма становится меньшей посылкой последующего силлогизма.
Прогрессивный и регрессивный полисиллогизмы в мышлении чаще всего применяются в сокращенной форме – в виде соритов.
Выделяют такой вид силлогизма, в котором обе посылки представляют собой сокращенные простые категорические силлогизмы. Данный вид силлогизма называется эпихейремой.
29. ИНДУКЦИЯ
Индукция – это умозаключение от знания меньшей степени общности к новому знанию большей степени общности.
Посылками индуктивного умозаключения являются суждения, в которых закрепляется информация, полученная опытным путем, об устойчивости признака у ряда явлений, принадлежащих одному и тому же классу.
Основной функцией индукции является генерализация, т. е. получение общих суждений. Данные обобщения могут носить различный характер – от простейших до эмпирических.
Общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют два вида индуктивных умозаключений: полную и неполную индукцию.
Полная индукция – это умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса.
Данные индуктивные умозаключения применяются в тех случаях, когда имеется дело с замкнутыми классами, в которых число элементов конечно и которые легко обозримы (например, число планет Солнечной системы).
Заключение по полной индукции может быть сделано не только из единичных, но и из общих суждений. Она дает достоверное заключение, поэтому ее часто применяют в математике и в других строгих доказательствах.
Неполная индукция – это умозаключение, в котором при повторяемости признаков у явлений опреде-. ленного класса делают вывод о принадлежности этого признака всему классу явлений.
Неполная индукция применяется в тех случаях, когда нельзя рассмотреть все интересующие элементы явлений; если число объектов либо бесконечно, либо конечно, но достаточно велико; рассмотрение уничтожает объект. При данном виде индукции исследуются не все, а некоторые элементы класса, и если у каждого из них обнаруживается повторяющийся признак, то делают вывод о его принадлежности всему классу явлений.
Одним из видов неполной индукции является научная индукция. Научной индукцией называется такое умозаключение, в котором на основании познания необходимых признаков или необходимой связи части предметов класса делается общее заключение обо всех предметах этого класса. Научная индукция так же, как полная и математическая, дает достоверное заключение.
Научная индукция опирается не столько на большое число исследованных фактов, сколько на всесторонность их анализа и установление причинной зависимости, выделение необходимых признаков или необходимых связей, предметов и явлений. Поэтому она и дает научное заключение.
Научная индукция в посылках опирается только на существенные связи и отношения, благодаря чему достоверность ее заключений носит необходимый характер.
Другим видом неполной индукции является популярная индукция. На основании повторяемости одного и того же признака у ряда однородных предметов и отсутствия противоречащего случая делается общее заключение, что все предметы этого рода обладают этим признаком. Такая индукция дает заключение вероятное, а не достоверное.
30. УМОЗАКЛЮЧЕНИЯ ПО АНАЛОГИИ
Аналогия – это умозаключение о принадлежности предмету определенного признака на основе сходства в признаках с другим предметом.
Аналогия дает не строго достоверные, а правдоподобные выводы. Поэтому, чтобы не получить ложных результатов, ею нужно пользоваться осторожно.
Существуют следующие правила «правильного пользования» аналогией:
1) нужно установить как можно больше сходных признаков у сравниваемых предметов;
2) найти у сравниваемых предметов существенные с точки зрения рассматриваемого вопроса признаки;
3) стремиться к тому, чтобы признаки сравниваемых предметов были специфическими;
4) необходимо учитывать количество и существенность пунктов различия;
5) переносимый признак должен быть того же типа, что и сходные.
Различают два вида аналогии: аналогию предметов и аналогию отношений.
Аналогия предметов. В данном умозаключении объектом уподобления выступают два единичных