существенно более ПОДРОБНЫЕ китайские списки. Такой список был опубликован, например, Био в 1846 году [141], том 6, с.42. Этот любопытный факт отметил еще Н. А. Морозов, причем он не смог разобраться — откуда и как появились эти загадочные дополнения к китайскому списку XVII века.

Но, как мы теперь понимаем, если эти дополнения появились в начале XIX века незадолго до напечатания нового расширенного китайского списка, то это ХОРОШО отвечает нашей реконструкции событий. В первичный китайский список были добавлены некоторые «наблюдения» для оправдания «китайской синусоиды» кометы Галлея.

Не нужно думать, что авторы подлога были злостными фальсификаторами. Скорее всего, они действовали из лучших побуждений. Дело в том, что к этому времени ПРИБЛИЗИТЕЛЬНЫЙ период обращения кометы Галлея уже, по-видимому, был известен. И был он вычислен, вероятно, во времена Галлея в XVIII веке на основе трех-четырех реальных появлений кометы за XVI–XVIII века.

Наука развивалась и кому-то, — по-видимому, не астроному, — пришла в голову мысль поискать возвращения кометы Галлея и в далеком прошлом в замечательных «древних» китайских списках. Почему- то ему пришла в голову мысль, что колебания периода обращения кометы около среднего значения (в 77 лет) должны регулярно повторяться и в прошлом. Он взял график за последние 700–800 лет и чисто механически повторил его назад в прошлое. Получилась периодическая зубчатая синусоида. А затем, к своему восторгу, автор этой идеи, ОБНАРУЖИЛ в китайском списке ПОЧТИ ВСЕ ТРЕБУЕМЫЕ ТОЧКИ (даты). Впрочем, он не понял, что тот же результат он получил бы, стартовав с любым другим начальным периодом, скажем в 109 лет. А не в 77.

Скорее всего, два-три наблюдения, «подтверждающих» его «теорию», он не нашел. Автор был, вероятно, не астроном. Такое расхождение теории с практикой, — нормальное явление для профессионального астронома, — разрушало созданную им картину гармоничного мира. И тогда он вставил эти недостававшие наблюдения. Или просто нашел какие-то китайские записи и проинтерпретировал их туманные даты и свидетельства как ему было нужно. Повторим еще раз — из лучших побуждений. Автор считал, что он восстанавливает истинную картину далекого прошлого.

А через 100–150 лет уже профессиональные астрономы Кроуэлл и Кроммелин с удивлением обнаружили эту, лишь недавно изготовленную, рукотворную синусоиду и канонизировали ее, превратив в астрономический «закон природы». Который вскоре — уже в 1910 году — был безжалостно нарушен той же самой природой. А именно, комета Галлея пришла на 3,5 года РАНЬШЕ ПРЕДСКАЗАННОГО «китайской синусоидой».

По-видимому, вся эта деятельность носила характер средневековой каббалы, когда многие ученые искали красивые, совершенные числовые соотношения в природе. Вспомним хотя бы рассуждения великого Кеплера о гармонии вселенной. В то время рассчитывали назад в прошлое лунные затмения, гороскопы и т. п. Вероятно, то же делали и с кометами.

В заключение, еще одно замечание о периоде в 77 лет для кометы Галлея. Если взять весь китайский список комет, а не только его часть после минус 100 года, — как мы делали выше, — то период кометы Галлея в 77 лет вообще НИЧЕМ НЕ ВЫДЕЛЯЕТСЯ на фоне других значений возможных периодов. Для его идеальной повторяемости не хватает ДВУХ ТОЧЕК, как и для многих других периодов.

11.2.7. О ХАОТИЧНОСТИ ДВИЖЕНИЯ КОМЕТЫ ГАЛЛЕЯ

В 1989 году в журнале «Astronomy and Astrophysics» появилась статья Б. В. Чирикова и В. В. Вячеславова [506], в которой показано, что в движении кометы Галлея присутствует ЗНАЧИТЕЛЬНАЯ СЛУЧАЙНАЯ СОСТАВЛЯЮЩАЯ. На эту работу обратили наше внимание профессор д.ф.м.н. В. В. Козлов и профессор д.ф.м.н. А. И. Нейштадт.

Главный вывод своего исследования авторы сформулировали так: «Показано, что движение кометы Галлея ХАОТИЧНО БЛАГОДАРЯ ВОЗМУЩЕНИЯМ, ВЫЗЫВАЕМЫМ ЮПИТЕРОМ» [506], с.146.

Таким образом, модель движения кометы Галлея не является детерминированной, а строится в рамках динамического хаоса. Имеется в виду следующее. Если некоторая комета, такая как, например, комета Галлея, имеет сильно вытянутую орбиту, выходящую за круговую орбиту Юпитера, то каждый раз, возвращаясь назад в Солнечную систему, она встречает Юпитер в случайной фазе в силу несоизмеримости их периодов обращения. Юпитер, как огромная планета, дает наибольший вклад в возмущение траектории кометы. Встречая его в случайной фазе, комета подвергается случайному возмущению.

Оказывается для комет этого типа, описываемого математической моделью, разработанной в статье [506], характерна ХАОТИЧНОСТЬ ДИНАМИКИ. Одним из наиболее чувствительных параметров орбиты кометы является время прохождения через перигелий, то есть время возвращения (период) кометы. В частности, период кометы Галлея — СЛУЧАЙНАЯ ВЕЛИЧИНА с экспоненциально нарастающим разбросом.

Но «идеальная китайская синусоида» в поведении периода кометы Галлея не могла появиться в результате СЛУЧАЙНОГО ЭКСПЕРИМЕНТА.

Нам скажут: хотя и редко, но чудеса все-таки случаются. Конечно, ответим мы. Например, обезьяна, случайно тыкая в клавиши пишущей машинки, может напечатать, — причем без грамматических ошибок, — осмысленный текст. Например, роман. Но вероятность этого события ничтожно мала, хотя и не равна нулю. И вероятность появления «китайской синусоиды» в случайной серии экспериментов тоже ненулевая. Но она настолько исчезающе мала, что ею можно смело пренебречь точно так же, как и вероятностью того, что какая-нибудь обезьянка лихо напечатает без пропусков и ошибок несколько томов романа «Война и Мир».

11.2.8. ПОДОЗРИТЕЛЬНО ВЫСОКАЯ ЧАСТОТА МАЛОВЕРОЯТНЫХ СОБЫТИЙ В СКАЛИГЕРОВСКОЙ ИСТОРИИ

Здесь уместно сделать одно общее замечание о маловероятных событиях в истории. Как Н. А. Морозову, так и нам приходилось неоднократно слышать следующее возражение. Как один из примеров, процитируем наиболее квалифицированного оппонента — математика Б. А. Розенфельда, опубликовавшего статью «Математика в трудах Н. А. Морозова» [151], с. 129–138. Комментируя обнаруженные Н. А. Морозовым странные и МНОГОЧИСЛЕННЫЕ совпадения в скалигеровской истории: совпадения потоков длительностей правлений в династиях разных эпох, совпадения астрономических событий и т. д., Б. А. Розенфельд писал:

«Н. А. Морозов подсчитывал вероятность тех или иных совпадений, и, найдя что эта вероятность чрезвычайно мала, делал вывод о невозможности этих совпадений. Такого рода рассуждения СОВЕРШЕННО НЕПРАВОМЕРНЫ (? — Авт.), так как теория вероятностей является наукой о массовых, а не о единичных явлениях, и ФАКТИЧЕСКИ МОГУТ ПРОИСХОДИТЬ СОБЫТИЯ, ВЕРОЯТНОСТЬ КОТОРЫХ СКОЛЬ УГОДНО БЛИЗКА К НУЛЮ» [151], с.137.

Б. А. Розенфельд прав в своем последнем высказывании. События с очень малой вероятностью действительно происходят. Но если вы хотите, чтобы некое редкое событие произошло, нужно предъявить большое количество испытаний. А именно, — порядка величины, обратной значению вероятности. Поэтому важна не только вероятность события, но и КОЛИЧЕСТВО ИСПЫТАНИЙ, в которых оно происходит.

Для этого и существует наука — математическая статистика, которая все это учитывает. И рассуждения Н. А. Морозова с точки зрения математической статистики вполне правомерны.

Для неспециалистов в теории вероятности, говоря на качественном уровне, отметим, что часто выдвигаемое нам возражение типа предыдущего, — «да, это событие маловероятно, но все-таки произошло в силу случайных причин», — НЕ МОЖЕТ ВЫДВИГАТЬСЯ СЛИШКОМ ЧАСТО. Его можно высказать один раз, два раза, ну — три раза. По конкретному поводу. Но когда оно начинает выдвигаться ОЧЕНЬ ЧАСТО и относится не к одному-двум, а к ЦЕЛОМУ КЛАССУ, СЕРИИ ПОРАЗИТЕЛЬНЫХ СОВПАДЕНИЙ В СКАЛИГЕРОВСКОЙ ИСТОРИИ, ТО ОНО ПОЛНОСТЬЮ ТЕРЯЕТ СВОЙ СМЫСЛ.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату