Complexity

Linear. Exactly last1 – first1 swaps are performed.

Example

vector<int> V1, V2;

V1.push_back(1);

V1.push_back(2);

V2.push_back(3);

V2.push_back(4);

assert(V1[0] == 1 && V1[1] == 2 && V2[0] == 3 && V2[1] == 4);

swap_ranges(V1.begin(), V1.end(), V2.begin());

assert(V1[0] == 3 && V1[1] == 4 && V2[0] == 1 && V2[1] == 2);

See also

swap, iter_swap.

transform

Category: algorithms

Component type: function

Prototype

Transform is an overloaded name; there are actually two transform functions.

template <class InputIterator, class OutputIterator, class UnaryFunction>

OutputIterator transform(InputIterator first, InputIterator last, OutputIterator result, UnaryFunction op);

template <class InputIterator1, class InputIterator2, class OutputIterator, class BinaryFunction>

OutputIterator transform (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, OutputIterator result, BinaryFunction binary_op);

Description

Transform performs an operation on objects; there are two versions of transform, one of which uses a single range of Input Iterators and one of which uses two ranges of Input Iterators.

The first version of transform performs the operation op(*i) for each iterator i in the range [first, last) , and assigns the result of that operation to *o, where o is the corresponding output iterator. That is, for each n such that 0 <= n < last – first, it performs the assignment *(result + n) = op(*(first + n)). The return value is result + (last – first).

The second version of transform is very similar, except that it uses a Binary Function instead of a Unary Function: it performs the operation op(*i1, *i2) for each iterator i1 in the range [first1, last1) and assigns the result to *o, where i2 is the corresponding iterator in the second input range and where o is the corresponding output iterator. That is, for each n such that 0 <= n < last1 – first1, it performs the assignment *(result + n) = op(*(first1 + n), *(first2 + n). The return value is result + (last1 – first1).

Note that transform may be used to modify a sequence 'in place': it is permissible for the iterators first and result to be the same. [1]

Definition

Defined in the standard header algorithm, and in the nonstandard backward-compatibility header algo.h.

Requirements on types

For the first (unary) version:

• InputIterator must be a model of Input Iterator.

• OutputIterator must be a model of Output Iterator.

• UnaryFunction must be a model of Unary Function.

• InputIterator's value type must be convertible to UnaryFunction's argument type.

• UnaryFunction's result type must be convertible to a type in OutputIterator's set of value types.

For the second (binary) version:

• InputIterator1 and InputIterator2 must be models of Input Iterator.

• OutputIterator must be a model of Output Iterator.

• BinaryFunction must be a model of Binary Function.

• InputIterator1's and InputIterator2's value types must be convertible, respectively, to BinaryFunction's first and second argument types.

• UnaryFunction's result type must be convertible to a type in OutputIterator's set of value types.

Preconditions

For the first (unary) version:

• [first, last) is a valid range.

• result is not an iterator within the range [first+1, last) . [1]

• There is enough space to hold all of the elements being copied. More formally, the requirement is that [result, result + (last – first)) is a valid range.

For the second (binary) version:

• [first1, last1) is a valid range.

• [first2, first2 + (last1 – first1)) is a valid range.

• result is not an iterator within the range [first1+1, last1) or [first2 + 1, first2 + (last1 – first1)).

• There is enough space to hold all of the elements being copied. More formally, the requirement is that [result, result + (last1 – first1)) is a valid range.

Complexity

Linear. The operation is applied exactly last – first times in the case of the unary version, or last1 – first1 in the case of the binary version.

Example

Replace every number in an array with its negative.

const int N = 1000;

double A[N];

iota (A, A+N, 1);

transform(A, A+N, A, negate<double>());

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату