• The ordering on objects of InputIterator1's value type is a strict weak ordering, as defined in the LessThan Comparable requirements.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1 and InputIterator2 have the same value type.

• StrictWeakOrdering is a model of Strict Weak Ordering.

• InputIterator1's value type is convertible to StrictWeakOrdering's argument type.

Preconditions

For the first version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to operator<. That is, for every pair of iterators i and j in [first1, last1) such that i precedes j, *j < *i is false.

• [first2, last2) is ordered in ascending order according to operator<. That is, for every pair of iterators i and j in [first2, last2) such that i precedes j, *j < *i is false.

For the second version:

• [first1, last1) is a valid range.

• [first2, last2) is a valid range.

• [first1, last1) is ordered in ascending order according to comp. That is, for every pair of iterators i and j in [first1, last1) such that i precedes j, comp(*j, *i) is false.

• [first2, last2) is ordered in ascending order according to comp. That is, for every pair of iterators i and j in [first2, last2) such that i precedes j, comp(*j, *i) is false.

Complexity

Linear. Zero comparisons if either [first1, last1) or [first2, last2) is an empty range, otherwise at most 2 * ((last1 – first1) + (last2 – first2)) – 1 comparisons.

Example

int A1[] = { 1, 2, 3, 4, 5, 6, 7 };

int A2[] = { 1, 4, 7 };

int A3[] = { 2, 7, 9 };

int A4[] = { 1, 1, 2, 3, 5, 8, 13, 21 };

int A5[] = { 1, 2, 13, 13 };

int A6[] = { 1, 1, 3, 21 };

const int N1 = sizeof(A1) / sizeof(int);

const int N2 = sizeof(A2) / sizeof(int);

const int N3 = sizeof(A3) / sizeof(int);

const int N4 = sizeof(A4) / sizeof(int);

const int N5 = sizeof(A5) / sizeof(int);

const int N6 = sizeof(A6) / sizeof(int);

cout << 'A2 contained in A1: ' << (includes(A1, A1 + N1, A2, A2 + N2) ? 'true' : 'false') << endl;

cout << 'A3 contained in A1: ' << (includes(A1, A1 + N2, A3, A3 + N3) ? 'true' : 'false') << endl;

cout << 'A5 contained in A4: ' << (includes(A4, A4 + N4, A5, A5 + N5) ? 'true' : 'false') << endl;

cout << 'A6 contained in A4: ' << (includes(A4, A4 + N4, A6, A6 + N6) ? 'true' : 'false') << endl;

The output is:

A2 contained in A1: true

A3 contained in A1: false

A5 contained in A4: false

A6 contained in A4: true

Notes

[1] This reads 'an equivalent element' rather than 'the same element' because the ordering by which the input ranges are sorted is permitted to be a strict weak ordering that is not a total ordering: there might be values x and y that are equivalent (that is, neither x < y nor y < x is true) but not equal. See the LessThan Comparable requirements for a fuller discussion.) If you're using a total ordering (if you're using strcmp , for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same.

[2] Note that the range [first2, last2) may contain a consecutive range of equivalent elements: there is no requirement that every element in the range be unique. In this case, includes will return false unless, for every element in [first2, last2), a distinct equivalent element is also present in [first1, last1) . That is, if a certain value appears n times in [first2, last2) and m times in [first1, last1), then includes will return false if m < n.

See also

set_union, set_intersection, set_difference, set_symmetric_difference, sort

set_union

Category: algorithms

Component type: function

Prototype

Set_union is an overloaded name; there are actually two set_union functions.

template <class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result);

template <class InputIterator1, class InputIterator2, class OutputIterator, class

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату