если их размеры, скорость и форма одинаковы.
Выгоднее всего, значит, увеличить вес снаряда, не увеличивая в то же время площади его поперечного сечения, то-есть площади, на которую давит воздух.
Для этого достаточно сделать снаряд длиннее.
Так на деле и поступают: на смену шаровым снарядам пришли продолговатые; и эти продолговатые снаряды делаются, по мере своего совершенствования, все длиннее и длиннее.
В артиллерии принято измерять длину снаряда не в линейных мерах, а в калибрах; если длина снаряда вдвое больше его диаметра, то говорят: снаряд имеет длину в два калибра (рис. 114).
Так вот, круглая граната, длина которой, разумеется, один калибр, сменилась продолговатой, в два калибра длиной. Это был снаряд начала шестидесятых годов девятнадцатого века. Десять лет спустя граната достигла длины в три калибра. Ко времени империалистической войны снаряд вытянулся еще больше и достиг четырех калибров в длину. А современная граната имеет в длину примерно уже пять калибров (рис. 114).
Заметно подросли снаряды за последние 80 лет!
Однако, если это так выгодно, почему бы не сделать снаряд еще длиннее, например, в десять калибров длиной? Почему бы не создать очень длинный снаряд – «снаряд-копье»? Оказывается, этому мешает все тот же воздух. Вглядитесь в рисунок 115, – снаряд выброшен из орудия головой вперед: сила сопротивления воздуха только тормозит движение снаряда. Но под действием силы тяжести он стал опускаться все ниже под линией бросания (рис. 116). И чем больше он опускается, тем больше подставляет сопротивлению воздуха уже не голову, а бок. Площадь, на которую давит воздух, становится больше (рис. 116), и сила сопротивления воздуха стремится уже не то лько4 тормозить, но и опрокинуть снаряд головой назад (рис. 117), снаряд начнет кувыркаться (рис. 118).
Кувыркающийся снаряд подставляет воздуху то один бок, то другой, то дно; он быстро теряет скорость и падает на землю.
Мы старались сделать снаряд подлиннее для того, чтобы он лучше преодолевал сопротивление воздуха. А оказывается: чем длиннее снаряд, тем легче его опрокинуть. Кувыркаясь же, снаряд, конечно, будет испытывать большее сопротивление воздуха.
Неужели же тут нет выхода?
Волчок на службе в артиллерии
Жонглер в цирке держит на кончике тросточки тарелку. Чтобы тарелка не упала, жонглер заставляет ее быстро вращаться.
Каждый видел детскую игрушку «волчок». Пока «волчок» быстро вертится, он стоит на своей острой ножке.
Еще интереснее прибор, известный из физики – гироскоп (рис. 119 и 120).
Гироскоп состоит из маховика, который может вращаться вокруг трех осей: во-первых, вокруг своей основной оси, на которую он посажен; во-вторых, вместе с кольцом, поддерживающим основную ось, – вокруг горизонтальной оси, перпендикулярной к первой, и, в-третьих, вместе с внешним полукольцом – вокруг вертикальной оси.
У гироскопа есть замечательное свойство: когда он быстро вращается, он не только сохраняет положение своей оси в пространстве, но и сопротивляется всяким попыткам изменить ее положение.
Этой замечательной способностью вращающегося тела сохранять свою устойчивость и воспользовались артиллеристы: они заставили снаряд быстро вращаться в полете.
Ствол орудия не оставляют теперь гладким внутри, а растачивают в нем пологие винтообразные желобки-нарезы. Благодаря этому внутри ствола оказываются углубления и выступы. Едва снаряд двинется с места, его медный поясок врезается в эти выступы.
На мягкой меди пояска образуются тогда свои выступы и углубления.
Все вперед и вперед скользит снаряд в стволе по его нарезам, точно по рельсам.
Но нарезы идут винтообразно, как винтовая лестница. Поэтому снаряд, следуя по ходу нарезов, начинает быстро вращаться.
Вылетев из ствола, он сохраняет вращение и в воздухе. Вращается он в наших орудиях слева вверх направо, то-есть, если смотреть сзади, – по направлению движения часовой стрелки.
Снаряды различных орудий делают от 200 до 500 оборотов в секунду.
Колесо автомобиля на полном ходу делает в секунду около 16 оборотов, винт самолета – от 35 до 75. Снаряд вращается в тридцать раз быстрее автомобильного колеса и в пять-семь раз быстрее, чем воздушный винт самолета.
Эта огромная скорость достаточна, чтобы обеспечить устойчивость современного продолговатого снаряда в полете.
Летящий гироскоп
Но если бы снаряд был в полете вполне устойчив, он летел бы, как изображено на рисунке 121, и падал бы на землю не головой, а дном.
На самом же деле снаряд летит не так.
Еще один опыт с гироскопом поможет нам лучше понять особенности полета снаряда.