В сводке о действии 1-й французской армии имеется указание, что за время с 7 апреля по 8 августа 1916 года звукометрической разведкой было определено местоположение 974 германских батарей, при этом большинство из них было определено с ошибкой, не превышающей 50 метров. Этим французская артиллерия была обязана профессору Эсклангону, поставившему на службу артиллерии разработанную им теорию акустики орудий и снарядов.

Надо, однако, сказать, что впервые вопрос об определении местоположения стреляющих батарей по звуку их выстрелов был поставлен и разработан русскими еще в 1909 году. Но командование царской армии не сумело реализовать это ценное начинание. Так заглохло это дело в России, для того чтобы возродиться через пять лет на полях Франции.

В чем состоит основной принцип работы звукоразведки?

Всем вам, конечно, приходилось слышать когда-нибудь выстрел из артиллерийского орудия, но немногие знают, что выстрел порождает обычно не один, а целых три звука.

Самый выстрел – взрыв пороха – порождает так называемую дульную волну.

Летящий снаряд, уплотняя перед собой частицы воздуха, создает, – в том случае, если скорость его полета больше скорости звука, – другую, известную уже вам, волну – балистическую, или снарядную.

Наконец, при падении или разрыве снаряд посылает еще одну звуковую волну – волну разрыва.

На рисунке 188 показан снаряд, только что вылетевший из орудия; на рисунке видны дульная и снарядная волны. Волны этого рода отличаются от обычных звуковых волн тем, что сопровождаются резким изменением давления – таким резким, что в окнах домов, расположенных невдалеке от стреляющего орудия, зачастую начинают дрожать стекла, а иногда стекла даже совсем вылетают из окон.

Рис. 188. Звуковые волны, порождаемые орудием и снарядом, и их запись на ленте звукометрической станции

Вот это изменение давления воздуха, порожденное дульной волной, и можно уловить особым прибором. Прибор этот устроен так, что он не только вычерчивает под влиянием изменения давления кривую черту на подвижной ленте (рис. 188), но и отмечает с точностью до тысячной доли секунды, когда именно произошло колебание давления.

Современная звукометрическая станция (рис. 189) – очень сложный и точный механизм. Главными ее частями являются звукоприемники и регистрирующий прибор, связанные между собой проводниками тока.

Звукоприемник (рис. 189) – это жестяной бак с узким горлышком, в которое вставлен тепловой микрофон, состоящий из тонких раскаленных электрическим током проволочек

Рис. 189. Схема звукометрической станции

Назначение звукоприемника состоит в том, чтобы передать энергию дошедшей до него дульной волны специальному перу, которое укреплено над подвижной бумажной лентой. Под влиянием переданной ему энергии перо начинает двигаться и чертить линию на ленте. Чем сильнее волна, тем больше энергии дойдет до пера и тем сильнее отклонится оно от первоначального положения: это значит, что перо выведет на ленте кривую большего размаха.

Передать энергию дульной волны перу, однако, нелегко. Приходится делать это не непосредственно, а через ряд промежуточных звеньев.

Вот далеко не полное перечисление тех, лишь основных, явлений, которые происходят в звукоприемнике и в регистрирующем приборе.

Под влиянием дошедшей до звукоприемника дульной волны давление внутри бака меняется, воздух в нем начинает словно пульсировать: он то сжимается, то расширяется.

Это вызывает движение воздуха в горлышке бака: в горлышке возникает как бы ветерок.

Из-за этого ветерка раскаленные проволочки теплового микрофона слегка охлаждаются.

Это сразу отзывается на их электрическом сопротивлении: сила тока в цепи меняется: ток начинает пульсировать подобно воздуху в звукоприемнике.

Поскольку сила электрического тока периодически меняется, постольку можно постоянный ток преобразовать трансформатором в переменный.

А переменный ток, пройдя по обмотке катушки, подвешенной между полюсами сильного электромагнита, заставит эту катушку повернуться на тот или иной угол.

Наконец, с катушкой скреплено то самое перо, которое чертит кривую на ленте.

Представьте себе теперь, что один из звукоприемников поставлен на поле боя. В момент прихода к нему звуковой волны перо регистрирующего прибора начинает чертить кривую. По началу записи вы можете легко определить момент прихода волны к этому звукоприемнику. Если же на некотором расстоянии от этого звукоприемника поставлен еще второй звукоприемник, то к нему звуковая волна придет или одновременно, или раньше, или позже, чем к первому.

Предположим, что источник звука и наши звукоприемники расположены так, как показано на рисунке 190. Расстояния от источника звука до обоих звукоприемников одинаковы; очевидно, и звук до них дойдет одновременно, но тогда, как видно из чертежа, источник звука должен находиться обязательно на перпендикуляре, восставленном в середине звуковой (акустической) базы (рис. 190). Во всех других случаях (рис. 191 и 192), когда расстояния от источника звука до звукоприемников не равны, очевидно, и звук дойдет до них не одновременно. Прибор позволит учесть эту «разность времен» и покажет, к какому – правому или левому – звукоприемнику звук пришел раньше, а к какому позже. Тогда, пользуясь специальными таблицами или счетной линейкой, звукометристы смогут уже построить направления на источник звука (рис. 191 и 192).

Рис. 190. Звук выстрела дошел до обоих звукоприемников в одно и то же время; значит, стреляющая батарея находится на одинаковом расстоянии от обоих звукоприемников, то-есть на перпендикуляре к середине «звуковой базы»

Рис. 191. Звук выстрела достиг прежде левого звукоприемника; значит, стреляющая батарея ближе к этому звукоприемнику, то-есть находится влево от перпендикуляра к середине «звуковой базы», угол ОБР пропорционален «разности времен»

Вы читаете Артиллерия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату