из одних только правил 1 и 2 следует, что для любых чисел А и В существуют такие числа X и У, при которых X порождает АУ, а У порождает ВХ. Например, существуют такие X и У, что X порождает 7 У, а У порождает 8X. Не можете ли вы найти эти числа?

6. — Из последней задачи, — сказал Фергюссон, — со всей очевидностью следует (правда, из второго принципа Крейга это получается еще более просто), что для любых операционных чисел М и N должны существовать такие числа X и У, при которых X порождает M(Y), а У порождает N(X). Причем это оказывается справедливым не только для данной машины, но и для любой машины, в программу работы которой включены правила 1 и 2. С помощью вашей теперешней машины можно, например, найти такие X и У, при которых число X порождает обращение числа У, а число У порождает ассоциат числа X.

Сумеете ли вы их найти?

7. — Это страшно интересно, — сказал Фергюссону Мак-Каллох, когда они с Крейгом решили последнюю задачу. — Но у меня возник вот какой вопрос: подчиняется ли моя машина «двойному» аналогу второго принципа Крейга? Иначе говоря, если заданы два операционных числа М и N, а также два произвольных числа А и В, то обязательно ли существуют такие числа X и У, при которых X порождает M (AY), а У порождает N(BX)

— Ну, конечно, — подтвердил Фергюссон. — Например, существуют такие числа X и У, при которых число X порождает повторение 7 У, а число У порождает обращение 89X.

Не могли бы вы найти эти числа?

8. — Я подумал еще вот о чем, — сказал Крейг. — Если имеется некоторое операционное число М и произвольное число В, то обязательно ли должны существовать такие числа X и У, при которых X порождает М(Y), а У порождает ВХ? Например, существуют ли такие X и У, при которых число X порождает ассоциат У, а число У порождает число 78 X?

А как думаете вы?

9. — Фактически, — продолжал пояснения Фергюссон, — у нас возможны самые разные комбинации. Так, давая некоторые операционные числа М и N и произвольные числа А и В, всегда можно найти числа X и У, которые отвечают любому из ниже перечисленных условий:

а) X порождает М(АУ) а У порождает N(X);

б) X порождает М(АУ) а У порождает ВХ;

в) X порождает M(Y), а У порождает X;

г) X порождает M(AY), а У порождает X.

Попробуйте доказать эти утверждения.

10. Триплеты и так далее.

— Ну, теперь-то, мне кажется, мы перебрали уже все возможные варианты, — сказал Крейг.

— Да нет, — ответил Фергюссон. — То, что я вам показывал до сих пор, — это еще только начало. А знаете ли вы, например, что существуют три числа X, У и Z, такие, что число X порождает обращение У, число У порождает повторение Z, а число Z порождает ассоциат X?

— Неужели? — удивился Мак-Каллох.

— Именно так, — подтвердил Фергюссон. — Более того, если заданы три произвольных операционных числа М, N и Р, то должны существовать такие числа X, У и Z, при которых X порождает M(Y), Y порождает N(Z), a Z порождает Р(Х).

Не сумеете ли вы, читатель, доказать это утверждение? И в частности, каковы будут эти числа X, У и Z, если известно, что число X порождает обращение У, число У порождает повторение Z, а число Z порождает ассоциат X?

После того как Крейг и Мак-Каллох решили и эту задачу, Фергюссон сказал:

— Конечно, тут тоже возможны самые разные варианты этого «тройного» закона. Например, если заданы три любых операционных числа М, N и Р, а также три произвольных числа А, В и С, то существуют такие числа X, У и Z, при которых число X порождает M(AY), число У порождает N(BZ), а число Z порождает Р(СХ). Это справедливо и в том случае, если взять не три числа А, В, С, а любые два из них или даже одно.[5] Так, мы можем найти такие числа X, У и Z, при которых X порождает А У, У порождает M(Z), a Z порождает N(BX). Возможны, естественно, и всякие другие варианты — вы вполне можете заняться ими на досуге.

— Кроме того, — продолжал он, — та же идея действует и тогда, когда мы используем 4 операционных числа или даже более. Например, мы можем найти числа X, У, Z и W, при которых число X порождает 78У, число У порождает повторение Z, число Z порождает обращение W, а число W порождает ассоциат 62Х. Возможности практически бесконечны, причем их удивительное многообразие обусловлено всего лишь правилами 1 и 2.

Решения

1. Одно из решений состоит в том, чтобы принять Х=4325243 и У=524325243. Поскольку число 25243 порождает число 5243, то число 325243 порождает ассоциат 5243, или число 524325243, которое и есть У.

Далее, так как число 325243 порождает У, то число 4325243 порождает обращение У, но 4325243 — это как раз и есть X. Таким образом, X порождает обращение У. Кроме того. У, очевидно, порождает повторение X (потому что У — это есть число 52Х, а поскольку число 2Х порождает X, то число 52Х будет порождать повторение X). Итак, X порождает обращение У, а У порождает повторение X.

2. Крейг воспользовался законом Мак-Каллоха, а именно: для любого числа А существует некоторое число X (а именно число 32A3), которое порождает число АХ. Так, в частности, если мы примем А за число 2, то получим некоторое число X (а именно число 3223), которое порождает 2Х. Число же 2Х в свою очередь будет порождать X. Таким образом, в качестве решения этой задачи подходит пара чисел 3223 и 23223: 3223 порождает 23223, а 23223 порождает 3223.

3. Крейг решил эту задачу следующим способом. Он рассудил, что ему надо всего лишь найти такое число X, которое порождает 27X. Тогда, положив У = 27Х, мы получим, что число X порождает У, а число У порождает 7Х. Такое число X он тоже нашел- это число 32273. Поэтому решение Крейга имеет вид: Х = 32273, У=2732273.

То же самое происходит, конечно, и в том случае, если вместо конкретного числа 7 мы возьмем любое число А. В самом деле, если Х = 322АЗ, а У = 2А322АЗ, то число X будет порождать У, а число У будет порождать АХ.

4. Что же касается Мак-Каллоха, то он подошел к решению данной задачи несколько иначе. Он начал с того, что стал искать такое число У, которое порождает 72 У. Теперь, если обозначить через X число 2 У, то мы получаем, что число X порождает У, а число У порождает 7Х. При этом нам уже известно, как найти такое число У — надо взять У = 32723. Итак, решение Мак-Каллоха имеет вид: Х = 232723, У = 32723.

5. Единственное, что нам нужно — это найти такое число X, которое порождало бы число А2ВХ. Тогда, если мы положим У=2ВХ, то будем иметь, что число X порождает А У, а число У порождает ВХ. Таким числом X, которое порождает А2ВХ, является число 32А2ВЗ. Стало быть, решение задачи выглядит так: Х = 32А2ВЗ, У = 2В32А2ВЗ. (В частном случае А = 7, В = 8 и решением будет Х = 327283, У = 28327283.)

6. Сначала попробуем решить эту задачу с помощью второго принципа Крейга, который, как мы помним, гласит, что для любого операционного числа М и для произвольного числа А существует некоторое число X (а именно число М32АМЗ), которое порождает М(АХ). Возьмем теперь два любых операционных числа М и N. Тогда, согласно этому принципу (если взять в качестве А число N2), найдется некое число X (а именно число M32N2M3), которое порождает число M(N2X). Ясно также, что число N2X порождает N(X).

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату