1. С помощью свойств 1–3 можно, оказывается, строго показать, что машина Фергюссона не способна доказать все истинные утверждения. Читателю предлагается найти такое утверждение, которое является истинным, но при этом не может быть доказано с помощью этой машины. Иначе говоря, мы должны найти такие числа пит (они могут быть как одинаковыми, так и разными), для которых кодовый номер утверждения n Є Аn—то есть число n*m — не мог бы быть напечатан машиной, но чтобы при этом число n являлось бы элементом множества А п.
2. В решении задачи 1, которое приведено ниже, числа n и m оба меньше 100. Имеется и другое решение этой задачи, для которого числа n, m также оказываются меньше 100 (при этом они опять могут быть как одинаковыми, так и разными). Сумеет ли читатель найти это решение?
3. Если не ограничивать сверху величину чисел n и m, то сколько всего решений может быть у такой задачи? Иначе, сколько существует истинных утверждений, которые недоказуемы с помощью машины Фергюссона?
Фергюссон вовсе не хотел отказываться от идеи создания такой машины, которая могла бы доказывать арифметические истины, не будучи в состоянии доказывать ложные заключения, поэтому он напридумывал целую кучу таких логических машин.[7] Однако для каждой новой машины либо он сам, либо Крейг с Мак-Каллохом все-таки находили такое истинное утверждение, которое машина доказать не могла. Поэтому в конце концов Фергюссон отказался от мысли сконструировать чисто механическое устройство, которое было бы одновременно и точным (в указанном выше смысле. — Перев.), и могло бы доказать любое истинное арифметическое утверждение.
Итак, все героические попытки Фергюссона не увенчались успехом, однако причина этого заключалась отнюдь не в недостатке авторской изобретательности. Мы не должны забывать о том, что он жил за несколько десятилетий до знаменитых открытий таких известных логиков, как Гёдель, Тарский, Клини, Тьюринг, Пост, Черч и другие ученые, о работах которых у нас вот-вот пойдет речь. Если бы Фергюссон дожил до этих открытий, то он понял бы, что неудачи его обусловлены исключительно тем, что он пытался создать нечто по сути своей совершенно невозможное! Поэтому, отдав должное Фергюссону и его коллегам Крейгу и Мак-Каллоху, распрощаемся с ними и перенесемся на три-четыре десятилетия вперед, в переломный 1931 год.
Решения
1. Одно из решений состоит в следующем: утверждение 75ЄА75 является истинным, но не может быть доказано машиной. И вот почему.
Допустим, что утверждение 75 Є А75 ложно. Тогда число 75 не принадлежит множеству А75 Следовательно, это число должно принадлежать множеству А25 (согласно свойству 2, множество Аn является дополнением множества А3n) — Это означает (согласно свойству 3), что число 75*75 принадлежит множеству А8, поскольку 25 = 3X8-1-1, и, следовательно, машина может напечатать число 75*75. Иначе говоря, это означает, что утверждение 75 Є А75 может быть доказано машиной. Таким образом, если бы утверждение 75 Є А75 было ложным, то оно вполне могло бы быть доказано машиной. Однако нам известно по условию, что машина точна и никогда не доказывает ложные утверждения. Поэтому утверждение 75 Є А75 не может оказаться ложным, и, стало быть, оно должно быть истинным.
Далее, поскольку утверждение 75ЄА75 истинно, то число 75 действительно принадлежит множеству Аn. Поэтому оно не может принадлежать множеству А 25 (согласно свойству 2), и, следовательно, число 75 * 75 в свою очередь не может принадлежать множеству А8, поскольку если бы это было так, то тогда, согласно свойству 3, число 75 принадлежало бы множеству а25. Поскольку ясно, что число 75 * 75 не принадлежит множеству Ag, то утверждение 756А75 не может быть доказано машиной. Итак, утверждение 75ЄA75 является истинным, но оно недоказуемо с помощью машины.
2. Прежде чем рассматривать другие решения, установим следующий факт весьма общего свойства. Пусть для всего дальнейшего ключевым является множество К — это множество всех чисел х, для которых утверждение х Є Аx недоказуемо машиной, или, что то же самое, множество таких чисел х, для которых число х*х не может быть напечатано машиной. Далее, множество А75 как раз и есть такое множество К, потому что утверждение, что х принадлежит множеству Аn, равносильно утверждению, что х не принадлежит множеству A25, что в свою очередь равносильно утверждению, что число х*х не принадлежит множеству А8, где А8 — это множество тех чисел, которые машина может напечатать. Итак, А75 = К. Но при этом и Аn = К, потому что утверждение, что некое число х принадлежит множеству An, равносильно утверждению, что число х*х принадлежит множеству А8 (согласно свойству 3, поскольку 73 = 3x24+1), что в свою очередь равносильно утверждению, что число х+х не принадлежит множеству А8 (согласно свойству 2). Таким образом, А75 — это множество всех тех чисел х, для которых число х*х не принадлежит множеству А8 или, что то же самое, множество всех чисел х, для которых утверждение х Є Аx не может быть доказано машиной. Следовательно, А73 — это то же самое множество чисел, что и A75 поскольку оба они тождественны множеству К. Более того, для любого заданного числа n, для которого Аn = К, утверждение n Є А* должно быть истинным, но недоказуемым с помощью машины. Это можно показать буквально с помощью тех же самых рассуждений, что и в рассмотренном нами частном случае n = 75 (в еще более общей форме эти рассуждения приведены в следующей главе). Тем самым мы получаем, что утверждение 73 Є А73 — это еще один пример истинного утверждения, кодовый номер которого машина напечатать не может.
3. Для любого числа n множество А9n должно совпадать с множеством n. В самом деле, множество А9n есть дополнение множества A3n, а множество А3n в свою очередь есть дополнение множества n; следовательно, множество А9n совпадает с Аn, Это означает, что множество A675 совпадает с множеством A75, и, стало быть, утверждение 675 Є А675 — это есть еще одно решение задачи. Аналогично утверждение 2175 Є A2175также является решением. Таким образом, мы получаем, что существует бесконечно много истинных утверждений, которые машина Фергюссона доказать не может: например, для любого n, которое равно произведению 75 на некоторое кратное числа 9 или произведению 73 на произвольное кратное числа 9, утверждение n Є А, является истинным, но недоказуемым посредством этой машины.
Доказуемость и истина
Крупной вехой в истории математической логики стал 1931 г. Именно в этом году Гёдель опубликовал знаменитую теорему о неполноте. Свою эпохальную работу[8] он начинает следующими словами:
«Развитие математики в направлении все большей точности привело к формализации целых ее областей, в связи с чем стало возможно проводить доказательства, пользуясь небольшим числом чисто механических правил. В настоящий момент наиболее исчерпывающими системами являются, с одной стороны, система аксиом, предложенная Уайтхедом и Расселом в работе «Princlpia Mathematica», а с другой — система Цермело—Френкеля в аксиоматической теории множеств. Обе эти системы настолько обширны, что в них оказывается возможным формализовать все методы доказательства, используемые сегодня в математике, — иначе говоря, все эти методы могут быть сведены к нескольким аксиомам и правилам вывода. Поэтому, казалось бы, разумно предположить, что указанных аксиом и правил вполне хватит для разрешения всех математических проблем, которые могут быть сформулированы в пределах данной системы. Ниже будет показано, что дело обстоит не так. В обеих упомянутых системах имеются