заставить отражать лучи и переднюю часть нашей камеры. Лучи, отраженные от нее, еще раз отразятся от другого, прикрепленного к ней небольшого зеркала и тогда уже войдут в камеру. Вместо сферических стекол и зеркал можно употреблять цилиндрические, и тогда пучок лучей, в виде линии, будет входить в узкое длинное отверстие цилиндрической камеры. Тут потери тепла будут больше и температура ниже. Сферические стекла невыгодны тем, что много поглощают лучей высокой и низкой преломляемости. Кроме того, при большой их величине они чересчур массивны, т. е. толсты, что еще более задерживает лучи. Их качество — сохранять блестящую и прозрачную поверхность, — столь драгоценное в воздухе, здесь не имеет преимущества, так как тут и металлические зеркала не тускнеют. Итак, мы останавливаемся для получения высоких температур на металлических зеркалах. Их материал может отражать солнечный свет почти без потери, они могут быть поразительно легки или, вернее, не массивны в среде, где нет тяжести, влажности, кислорода и других веществ, портящих поверхность зеркал. Нагреваемые камеры, жилища, оранжереи или заводы чаще имеют вид длинных труб, а потому нагревать их удобнее цилиндрическими зеркалами, производство которых к тому же и проще — стоит только слегка изогнуть плоский лист. Особенной точности формы тут не нужно. У трубы должно быть, вдоль ее по образующей, узкое отверстие. Если цилиндр должен быть закрыт, при содержании в нем летучих тел, то края щели соединяются крепкими металлическими перемычками и промежутки между ними заделываются возможно прозрачным веществом (например, слюдой, чистым кварцем). К щели же примыкают две половины цилиндрического зеркала, обращенные вогнутостью к Солнцу, как и самая цель. Величина зеркала может быть равна среднему продольному сечению трубы, а может быть и больше его. В последнем случае температура в трубе получится еще выше. Лучи, отраженные зеркалом, образуют линейный фокус. Недалеко от него может быть установлено и соединено с трубой другое узкое и длинное, тоже цилиндрическое, но вогнутое зеркало, которое отразит фокусную линию как раз в цель. Тут она расходится в пучок и освещает ярким солнечным светом внутренность более или менее обширной трубы.

Шар или цилиндр со стеклом сферическим или цилиндрическим.

Большое вогнутое зеркало и второе малое выпуклое. Шар или цилиндр с парой зеркал — сферических или цилиндрических, с круглой или длинной прямоугольной щелью, закрытой или не закрытой прозрачной срединой. Но всегда — узкий входящий пучок, что усложняет в случае устройства оранжереи, так как требует рассеяния света.

Для одних работ будут предпочитаться стекла, для других зеркала.

Тонкие кольцевые сферические или цилиндрические зеркала.

Когда камера мала в сравнении с зеркалом.

Итак, мы можем в эфире наблюдать тела при всякой температуре, как на Земле, даже в более широких пределах. Но чего стоит, каких громадных усилий, искусства и учености, получение на Земле температуры, близкой к абсолютному нулю или 4000° Ц! Как мала эта земная среда и как неудобна для опытов исследования тел! Здесь же это очень легко. Любые массы на любое время, без всяких затруднений, мы можем подвергнуть более низкой температуре, чем какая получена в земных лабораториях при испарении гелия в пустоте. Понятно, раз является легкая возможность для всякого получать желаемые температуры, то изучение свойств тел, в зависимости от их температуры, бесконечно уточнится и расширится.

Практические выгоды, получение желаемых температур

Итак, температура наших эфирных камер, например, жилищ, очагов, кухонь, машинных котлов, оранжерей, огородов, полей и т. д., может изменяться самыми простыми, ничего не стоящими средствами почти от абсолютного нуля (-273) до температуры поверхности Солнца (6000° Ц). Вспомним, что наши экраны и зеркала в эфирной пустот никогда не тускнеют, что они невесомы, а потому могут быть очень тонки, дешевы и неограниченно громадны. Тогда понятна будет возможность и удобство их применения. Какие же практические выводы? Их очень много. Постараемся хоть малую часть их перечислить.

Жилища обитателя эфирного пространства, без всяких затруднений, могут иметь желаемую температуру. Ее можно сохранять постоянной и можно менять как угодно, останавливая на желаемой высоте. Температура, близкая к температуре человеческого тела, позволит ему обходиться без всяких одежд, кроме украшений и фигового листка. Она уменьшит расход его жизненных сил до минимума. Об отоплении жилищ нет смысла и говорить. Подходящая температура будет всегда к услугам больных, старцев, младенцев, вообще людей всякого возраста, вкуса, состояния, пола и т. п. Бани становятся ничего не стоящими. Дезинфекция жилищ повышенной температурой — один момент. Удобно уничтожение тем же способом всяких зародышей в почве — вместо последующего после сева тяжелого труда выпалывания сорных трав и уничтожения вредителей растений. Подходящая температура для разных сортов полезных растений даст наилучшие урожаи. Легко получение желаемой температуры для кулинарных и технических целей. Как устраивать жилища и технические сооружения с желаемой и быстро (по желанию или надобности) изменяемой температурой — об этом речь впереди. Громадная возможная разность температур позволяет утилизировать солнечную энергию почти целиком. Можно жить очень далеко от Солнца, в пределах Марса или Юпитера, и иметь при этом достаточную для человека температуру. Можно путешествовать без боязни по всей солнечной системе, удаляясь к Нептуну и приближаться к Меркурию и еще гораздо ближе к Солнцу. Даже у Нептуна света еще довольно для жизни питающих человека растений. Недостает только тепла. Но и его, мы видим, можно получить в достаточной степени.

Лучи солнца, пустота и невесомость тел.

Явления: твердые тела, жидкие и газообразные.

Действие лучей солнца

Сейчас мы и эфире наблюдаем еще пустоту и невесомость тел.

С явлениями невесомости мы знакомы. Действие пустоты также изучено, хотя здесь пустота совершенная и не ограниченная в объеме. Мы уже говорили, что, затеняя испаряющиеся тела, можно совершенно остановить их испарение. Отсюда способ совершенного хранения газов и других самых летучих веществ. Кроме того, этим способом можно собирать упущенные нечаянно или выпущенные с целью газы и пары летучих веществ. Можно также собирать газы п пары, существовавшие в эфире раньше поселения человека.

Действие обнаженных, чистых, не ослабленных земною атмосферою лучей Солнца неизвестно. Вероятно, они убивают живые существа и обладают большою химическою энергией.

Неиспаряющиеся твердые тела сохраняются тут без изменения. Какое бы сродство к кислороду или другим веществам ни имело тело, оно без атмосферы и соприкосновения с иными телами сохранит здесь свой наружный блеск, вид и состав. Тела кристаллические, приведенные… в аморфное состояние, стремятся с течением времени принять свойственную им кристаллическую форму. Низкая температура также должна ослабить химическое сродство, если не совсем его уничтожить у некоторых тел.

Тела твердые и испаряющиеся должны уменьшаться в объеме и исчезать, обращаясь в пары. Полутвердые тела, как сапожный вар, полурасплавленное стекло и другие аморфные (некристаллические) тела нагреванием превращаются в полужидкое состояние, с течением времени меняют свою форму, закругляя углы и стремясь принять форму шара. Это явление может протекать сотни лет. Когда, наконец, тело получит вид сферы, равновесие формы устанавливается, т. е. она более не меняется.

Жидкость всегда имеет форму шара или стремится ее принять, если нет влияния других соприкасающихся с ней тел. Нарушая вид жидкого шара прикосновениями и давлениями и удаляя снова эти силы, увидим, что жидкость колеблется и быстро принимает прежнюю сферическую форму, после чего наступает равновесие. Давлением можно всячески изменить форму жидкого мячика. Он кажется тем упруже, чем меньше, и напоминает надутый воздухом резиновый шар. Иные формы жидкости, образуемые при участии посторонних тел (например, мыльный пузырь, пластинки жидкости на проволочных фигурах и т. д.), более устойчивы в среде без тяжести, где последняя не способствует нарушению равновесия. Некоторые сплошные формы вполне устойчивы: например, жидкая чечевица в проволочном кольце. Соприкасающиеся шары из одного вещества сливаются в один шар, после нескольких колебаний формы. Один жидкий шар можно лопаткой разбить на многие разных или одинаковых размеров. Шары из разнородных, но способных к смешанию жидкостей также сливаются. Несмешивающиеся жидкости не сливаются в одно, но могут образовать сложную форму; иногда получается шар в шаре.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату