возрастание мощности вспышек разных классов будет выглядеть так: А = 1, В = 10, С = 100, М = 1000, Х = 10 000.

Многочисленные наземные и орбитальные солнечные обсерватории сегодня оснащены телескопами, работающими в линии атома водорода Н-альфа. Фильтры, которые позволяют увидеть эти расположенные в красной области спектра линии в общем потоке, наиболее удобны для фиксации процесса возникновения солнечной вспышки в ее динамике. Причем опыт подобных «документированных» наблюдений не нов – первые фильмы с заснятыми солнечными вспышками относятся к середине XX века. Например, фильм, записанный во время выброса протуберанца лимбовой солнечной вспышки 10 октября 1971 года в обсерватории Big Bear Solar Observatory. Как и многие другие, эта запись доступна для просмотра в Интернете.

Что ж, нам удалось выяснить, что значительная часть энергии солнечной вспышки является кинетической энергией заряженных частиц. Солнце исторгает из себя миллиарды тонн вещества со скоростью от 20 до 2000 километров в секунду (в зависимости от силы вспышки). Это явление называется корональными выбросами массы.

Геомагнитные бури бушуют именно тогда, когда выплеснутые миллиарды тонн солнечного вещества достигают магнитосферы нашей планеты. Но подобная бомбардировка не только сминает магнитное поле Земли, как сообщают нам популярные источники, – это упрощение. На самом деле возникновению геомагнитной бури предшествует еще один важный этап.

При нормальной солнечной активности потоки горячей плазмы движутся от Солнца к Земле непрерывными равномерными волнами. На расстоянии около десяти земных радиусов от поверхности планеты частицы несколько изменяют направление под влиянием магнитного поля Земли. Обтекая планету, они образуют кометообразную плазменную полость, которую принято называть магнитосферой. Это весьма сложный объект с множеством удивительных особенностей. Основные его показатели связаны с силой потоков солнечной плазмы и с солнечной активностью в целом. Хвост магнитосферы Земли направлен в противоположную Солнцу сторону – он служит своеобразным накопителем магнитной энергии. Заряд в хвосте накапливается до определенных пределов, после чего происходит нечто вроде магнитного взрыва в удаленной от нас на сотни тысяч километров точке хвоста магнитосферы. Высвобождение накопленной в этом резервуаре энергии нагревает плазму всей магнитосферы. Движения дополнительно разогретой плазмы приводят к возникновению электрических токов мощностью миллионы ампер.

Вследствие вспышек на Солнце подобные высвобождающие энергию плазмы взрывы возникают не только в хвосте магнитосферы, но и по всей ее площади, а электрические токи окутывают пространство около земного шара подобием многократно превосходящей нашу планету грозовой тучи. Это и есть геомагнитная буря – опасное космическое явление. Человечество ощущает на себе лишь малую его часть – настолько малую, что она подобна вершине айсберга. Но что, если на нас обрушится весь айсберг?..

 

Сделанные LASC0 фотографии Солнца в ультрафиолетовом диапазоне

Из-за нависающей над цивилизацией постоянной угрозы разработка системы раннего прогнозирования солнечных вспышек имеет приоритетное значение. В этом направлении ведутся весьма дорогостоящие работы – по всей планете на них расходуются миллиарды. И сегодня можно с уверенностью утверждать, что техническая база для успешного прогнозирования взрывов в областях солнечных пятен уже подготовлена – чего стоит хотя бы большой космический коронограф LASCO (Large Angle and Spectrometric Coronagraph), который находится на борту знаменитой станции-обсерватории SOHO (Solar and Heliospheric Observatory). Этот прибор уже больше десяти лет детально фиксирует все солнечные вспышки. Благодаря его показаниям получены неплохие результаты.Так, например, при помощи LASCO доказано, что частота многотонных выбросов массы нашей звезды непосредственно связана с солнечным циклом – при минимуме солнечной активности, как правило, происходит не более 3-4 средних и совсем небольших вспышек в месяц, а во время максимума на это же время приходится около 50 корональных выбросов массы.

Пожалуй, изучив эти данные, можно прийти к выводу, что опасения ученых по поводу приближающегося пика активности очередного солнечного цикла имеют под собой прочную научную основу. Чтобы лучше понять, чего нам следует ожидать уже через пару лет, попытаемся разобраться в некоторых особенностях теории солнечных циклов.

Факты

Лавры первооткрывателя солнечных пятен принадлежат Галилео Галилею. Научившись ослаблять режуще яркий солнечный свет, ученый уже в 1610 году стал изучать Солнце при помощи зрительной трубы – подслеповатого прародителя современных сверхмощных телескопов, от которых уже ничему не укрыться. В 1613 году были опубликованы иллюстрированные письма Галилея, описывающие открытие.

Вышеуже говорилось о Маундеровском минимуме солнечной активности, который пришелся на 1645- 1715 годы. Несмотря на то что это явление было зафиксировано в период, когда достойный уровень наблюдений за Солнцем был невозможен даже технически, в длительном спаде активности светила сомневаться не приходится – слишком много тому пугающих доказательств.

Основной показатель колебаний солнечной активности – изменения числа Вольфа, или. как его иногда называют, цюрихского числа солнечных пятен. Благодаря астроному Р. Вольфу, собравшему и систематизировавшему данные о периодах солнечной активности, первый опыт ежедневного наблюдения солнечных пятен принадлежит именно обсерватории в Цюрихе (Швейцария) – одной из старейших в Европе. Специалисты занимаются их подсчетом и регистрацией с 1749 года. До того, как появилась возможность делать фотографии Солнца, пятна изображали от руки.

Смелый первооткрыватель солнечных пятен Галилео Галилей

С 1874 года изучением солнечных пятен занялись астрономы английской Королевской обсерватории Гринвича (Royal Observatory, Greenwich). Эти наблюдения были уникальны для своего времени тем, что англичане не ограничивались простым подсчетом затемнений на солнечном диске, а пошли дальше – они определяли размер пятен и места их возникновения на солнечной поверхности. Проанализировав эти данные, королевские астрономы пришли к выводу, что пятна чаще всего появляются в тех поясах Солнца, которые расположены по обеим сторонам от экватора звезды. Стало известно, что в начале цикла активности пятна возникают на значительном расстоянии от экватора, а с приближением пика активности новые пятна образуются все ближе к нему. Затемнения с обеих сторон окружают экватор Солнца, и, когда цикл подходит к концу, обе зоны возникновения пятен примыкают к нему вплотную.

На фотосфере, видимой оболочке Солнца, пятна нередко возникают группами, и подсчитать отдельные затемнения зачастую весьма проблематично. Считается, что основные трудности связаны с условиями наблюдения, ведь Солнце – весьма сложный объект, к тому же отделенный от нас немалыми расстояниями. Однако можно говорить и о проблемах, которые возникают из-за самой природы солнечных пятен: по сути, четких границ они иметь не могут. Тем не менее не стоит считать, что сливающиеся для наших приборов пятна группы – это одно пятно, так как эти затемнения нередко разделяют тысячи километров (число условное) «нормальной» поверхности Солнца.

Как же их сосчитать? Принцип определения числа Вольфа довольно прост.

Известно, что количество пятен в группе колеблется в пределах 5-15, то есть в среднем составляет один десяток. Поэтому, чтобы определить число Вольфа для конкретного периода, достаточно подсчитать возникавшее за это время количество групп пятен, умножить на 10 и прибавить число отдельных, «отбившихся» от группы затемнений.

Факты

Благодаря числу Вольфа уже в XVIII веке можно было говорить о цикле солнечной активности. Определением числа Вольфа сегодня занимаются центры в Европе и США. Европейский Центр наблюдения и регистрации индекса солнечных пятен (Sunspot Index Data Center) находится в Бельгии. Получаемые оттуда результаты называются ISN (International Sunspot Number – международное число солнечных пятен).

В США аналогичными наблюдениями занимается Центр исследования атмосферы и космического пространства (NOAA. National Oceanic and Atmospheric Administration), который соответственно подсчитывает число солнечных пятен NOAA (NOAA Sunspot Number).

Кроме количества, размеров, местоположения и прочих характеристик солнечных пятен, существует немало методов определения солнечной активности. Например, один из самых эффективных «непрямых»

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×