m1v1 = m2v2.

Подобное равенство можно написать для любого движущегося тела, будь то самолет или ракета, танк или автомобиль, подводная лодка или железнодорожный состав.

В некоторых случаях можно отчетливо наблюдать перемещение внешней по отношению к движущемуся телу среды — это струя воды за винтом корабля или вихри воздуха за самолетом. Если же среда, с которой осуществляется взаимодействие, имеет достаточно большую массу, перемещение ее на глаз не заметно. Так, смещение железнодорожных рельсов происходит в основном в пределах упругих деформаций металла и только за длительный период проявляется в виде так называемого угона, измеряемого сантиметрами, а то и миллиметрами.

Итак, поскольку окружающая движущееся тело среда, с одной стороны, обеспечивает саму возможность передвижения, а с другой — оказывает сопротивление движению, решение задачи создания средств доставки армейских грузов должно начинаться именно с изучения свойств сред, в которых этот процесс происходит. Заметим, что такие разделы физики, как гидродинамика и аэродинамика, возникли и достигли нынешнего, столь высокого уровня развития именно в связи с необходимостью изучения свойств воды и воздуха при движении по ним кораблей и самолетов.

Однако вода и воздух, пожалуй, не самая сложная среда для движения. Свойства их достаточно однородны, сопротивления, оказываемые ими, зависят в основном от скорости движения и могут быть описаны сравнительно несложными математическими уравнениями. Поэтому и удалось отыскать совершенные гидро- и аэродинамические формы кораблей и самолетов, разработать достаточно эффективные конструкции их движителей — устройств для преобразования работы двигателя в работу, расходуемую на движение транспортных средств. Иными словами, высокая эффективность технических решений, примененных в конструкциях кораблей и самолетов, имеет своей первопричиной прежде всего однородность сред, в которых эти транспортные средства движутся. Всякое же изменение свойств среды, как показал опыт, требует соответствующей переработки конструкции. Например, изменения свойств взаимодействующего с самолетом потока воздуха при переходе к полетам со сверхзвуковыми скоростями привело к существенным переменам в конструкции самолета. Увеличение сопротивления воды при росте скорости движения кораблей оказалось настолько значительным, что пришлось прибегнуть к специальным конструкциям — подводным крыльям, позволившим судам вырваться из воды в среду с меньшим сопротивлением — в воздух. Следует напомнить, что и воздух, и вода, с точки зрения физического состояния вещества, — однофазные среды: воздух только газообразен, а вода только жидка.

Посмотрим теперь, как обстоит дело с третьим фазовым состоянием вещества — твердым. Транспортные средства, предназначенные для движения по твердым однородным средам (шоссейным и железным дорогам), также достигли высокой степени совершенства: они экономичны, рациональны по конструкции, недороги в производстве. Но в связи с отсутствием в природе твердых однородных сред для передвижения транспорта их приходится создавать искусственно — строить дороги. Это та цена, которую мы вынуждены платить за отсутствие транспорта, способного двигаться по бездорожью, т. е. в разнородной среде.

Итак, нынешний уровень развития и состояние науки и техники позволили найти оптимальные решения для транспортных средств, предназначенных для движения по любой однофазной и однородной среде. Вне расчетных условий внешней среды современные транспортные средства практически двигаться не могут, да и вряд ли кому-либо придет в голову требовать от тепловоза движения не по рельсам, а по воде, а от подводной лодки — по суше. Маневрирование, например, самолетов по аэродромам настолько экономически невыгодно, что предпочитают иметь автотягачи для их буксировки.

Иное дело армейские машины. Они не могут быть рассчитываемы на какую-либо стабилизацию условий, в которых должны работать. В условиях применения ядерного оружия движение по дорогам будет скорее исключением, нежели правилом. Мосты и переправы будут уничтожаться, дефиле — забиваться транспортом или заражаться радиоактивными осадками. Короче говоря, преимущество в бою будет на стороне той армии, техника которой не будет привязана к дорогам, а сможет совершать свободные маневры по бездорожью и появляться там и тогда, где и когда противник ее меньше всего ожидает. Поэтому к армейской технике и предъявляются требования уверенного передвижения по бездорожью. Военные машины должны двигаться по песку и болотам, скалам и снегам, преодолевать водные преграды на плаву. Неплохо было бы, чтобы они могли и в воздух подниматься…

Уже одно простое, далеко не полное перечисление таких требований показывает, что, в отличие от невоенных, армейские машины должны быть способными выполнять поставленную задачу не в однофазной, однородной окружающей среде, а в нескольких фазах, при широком диапазоне преодолеваемых во время движения внешних сопротивлений.

Задача создания таких машин очень не проста. Видный зарубежный специалист в области машин высокой проходимости М. Г. Беккер заявил однажды, что решение этой проблемы будет найдено тогда, когда к ней будут привлечены силы ученых такого масштаба, как Фруд и Рейнольдс, Мах и Жуковский. В чем же сложность? Корень трудностей кроется в том, что бездорожье, с точки зрения передвижения по нему, — среда с крайне разнообразными и часто меняющимися под влиянием внешних условий свойствами. Поэтому хорошо зарекомендовавшие себя конструктивные решения транспортных средств обычного типа оказываются неприменимыми или неэффективными при создании машин для, бездорожья.

В связи с отсутствием теоретической базы создание транспортных средств высокой проходимости велось, да и по сей день ведется в армиях многих стран методом «проб и ошибок». Конструкторы оснащают машину устройствами и приспособлениями, позволяющими ей хотя бы на короткое время выполнять задачу вне расчетных условий: агрегаты машины герметизируются, кузов увеличивается до размеров, обеспечивающих плавучесть, ставится специальный движитель для плавания и считается, что задача преодоления водных преград успешно решена. К обычному автомобилю добавляют несколько ведущих осей, резко усложняют трансмиссию, ставят лебедку, вводят шины с регулируемым давлением воздуха и, следовательно, с увеличенной площадью контакта с грунтом. Траки гусеничных машин делают настолько широкими, насколько это позволяют конструктивные соображения. Агрегаты всех армейских машин защищают от попадания влаги и пыли, водителя — от ослепления фарами, специальные устройства обеспечивают стабилизацию теплового режима при холоде и жаре…

Рациональны ли подобные конструктивные решения? Вряд ли, ибо конструкции армейских машин при этом резко усложняются, объем работ по их техническому обслуживанию и ремонту возрастает, становятся более строгими требования к квалификации обслуживающего персонала, надежность снижается, стоимость увеличивается, а собственный вес возрастает настолько, что для полезной нагрузки мало что остается.

Возникает и другой вопрос: оригинальны ли попытки конструкторов оснастить машину приспособлениями, повышающими проходимость, защитить ее специальными устройствами от всех невзгод? Давайте обратимся к литературной аналогии и вспомним небезызвестного чеховского героя — Беликова. Тот тоже, выходя из дома, на всякий случай надевал калоши и теплое пальто, затыкал уши ватой, укутывал шею шарфом, глаза предохранял темными очками, а для защиты от атмосферных осадков всегда таскал с собой зонтик. Есть ли смысл в конструировании армейских машин следовать идеям «человека в футляре»? До поры до времени этот этап был неизбежен. Сейчас же, по мнению многих специалистов, созрели условия для нового качественного скачка. На современном этапе нужны новые пути, новые конструктивные решения, которые могут быть найдены в результате проведения больших и серьезных теоретических и экспериментальных работ, глубокого проникновения в физику процессов, происходящих при движении машины по бездорожью. В связи с этим стоит подробнее рассмотреть, какие теоретические и экспериментальные данные, достижения каких разделов физики могут уже сейчас, сегодня, быть рекомендованы конструкторам для реализации в машинах высокой проходимости.

Прежде всего, условимся для краткости, что в дальнейшем под термином «грунт» мы будем понимать любую поверхность или среду, с которой может встретиться армейская машина, предназначенная для движения по бездорожью. Таким образом, понятием «грунт» охватываются пески и снег, грязь и болота. Движение по лесам, крутым оврагам и скалам — это предмет самостоятельного изучения, и касаться его мы не будем.

Что же такое грунт? В отличие от таких однофазных сред, как вода или воздух, он представляет собой многофазную среду. Любой объем грунта наряду с твердыми частицами, образующими так называемый

Вы читаете Физика в бою
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату