Придя к понятию теплоты, мы можем исследовать его природу ближе. Пусть мы имеем два тела: одно горячее, а другое холодное, или, точнее, одно тело более высокой температуры, чем другое. Установим между ними контакт и освободим их от всех других внешних влияний. Мы знаем, что в итоге они достигнут одной и той же температуры. Но как это получается? Что происходит с того времени, когда они приведены в соприкосновение, до достижения ими одинаковой температуры? На ум приходит картина течения теплоты от одного тела к другому, аналогично тому, как вода течет с более высокого уровня к низшему. Эта, хотя и примитивная, картина оказывается соответствующей многим фактам, так что можно провести аналогию:

Вода ? Теплота

Более высокий уровень  ? Более высокая температура

Более низкий уровень ? Более низкая температура

Течение продолжается до тех пор, пока оба уровня, т. е. обе температуры, не сравняются. Этот наивный взгляд можно сделать более полезным для количественного рассмотрения. Если смешиваются определенные массы воды и спирта, каждая при определенной температуре, знание теплоемкостей позволяет предсказать конечную температуру смеси. Наоборот, наблюдение конечной температуры и небольшое знание алгебры позволяют нам найти отношение двух теплоемкостей.

Мы приходим к понятию теплоты, которое оказывается здесь похожим на другие физические понятия. Согласно нашему взгляду, теплота — это субстанция, такая же как и масса в механике. Ее количество может либо изменяться, либо же оставаться постоянным, подобно деньгам, которые можно либо отложить в сейф, либо же истратить. Количество денег в сейфе будет оставаться неизменным до тех пор, пока сейф остается запертым; точно так же будут неизменными количества массы и теплоты в изолированном теле. Идеальный дорожный термос аналогичен такому сейфу. Больше того, как масса в изолированной системе остается неизменной, даже если происходит химическое превращение, так же и теплота сохраняется даже в том случае, когда она переходит от одного тела к другому. Даже если теплота употребляется не на повышение температуры тела, а, скажем, на таяние льда или на превращение воды в пар, мы можем по-прежнему думать о ней как о субстанции, так как можем снова получить ее при замерзании воды или при конденсации пара. Старые названия — скрытая теплота плавления или испарения — показывают, что эти понятия получены из представления о теплоте как о субстанции. Скрытая теплота временно скрывается, подобно деньгам, положенным в сейф, но ее можно использовать, если известен запирающий механизм.

Но теплота, разумеется, не субстанция в том же смысле, как масса. Массу можно взвесить на весах, а можно ли взвесить теплоту? Весит ли кусок железа больше, когда он докрасна нагрет, по сравнению с тем, когда он холоден как лед? Эксперимент показывает, что нет. Если теплота — субстанция, то она невесомая субстанция. «Тепловая субстанция» обычно называлась теплородом; через него мы впервые знакомимся с целым семейством невесомых субстанций. Позднее мы будем иметь случай проследить историю этого семейства, его подъем и падение. Теперь же достаточно отметить зарождение отдельного члена этого семейства.

Цель всякой физической теории — объяснить максимально широкую область явлений. Она оправдывается постольку, поскольку делает события понятными. Мы видели, что субстанциональная теория теплоты объясняет много тепловых явлений. Однако скоро станет очевидным, что это опять ложная идея, что теплоту нельзя считать субстанцией, хотя бы и невесомой. Это ясно, если вспомнить о некоторых простых экспериментах, отметивших начало цивилизации.

О субстанции мы думаем как о чем-то, что никогда не может быть ни создано, ни разрушено. Однако первобытный человек с помощью трения создал теплоту, достаточную для того, чтобы зажечь дерево. Примеры нагревания посредством трения слишком многочисленны и хорошо известны, чтобы о них нужно было рассказывать. Во всех этих случаях создается некоторое количество теплоты — факт, трудно объяснимый с точки зрения субстанциональной теории. Верно, что защитник этой теории может придумать доводы с целью объяснить этот факт. Его рассуждение должно быть приблизительно таким: «Субстанциональная теория может объяснить видимое создание теплоты. Возьмем простейший пример, когда два куска дерева трутся друг о друга. Так вот, трение — это нечто такое, что воздействует на дерево и изменяет его свойства. При этом свойства изменяются так, что неизменное количество теплоты должно создавать более высокую температуру, чем прежде. В конце концов, единственное, что мы замечаем, это повышение температуры. Возможно, что трение изменяет теплоемкость дерева, а не общее количество теплоты».

В этой стадии обсуждения было бы бесполезным спорить с защитником субстанциональной теории; это вопрос, который может быть разрешен только экспериментально. Представим себе два одинаковых куска дерева и предположим, что температура их изменена одинаково, но различными методами: в одном случае, например, путем трения, а в другом — при помощи соприкосновения с печкой. Если оба куска имеют одинаковую теплоемкость при новой температуре, то рушится вся субстанциональная теория. Имеются очень простые методы определения теплоемкостей, и судьба этой теории зависит от результата именно таких измерений. В истории физики часто встречается такое испытание, которое способно произнести приговор о жизни или смерти теории; оно называется experimentum crucis. Решением суда такого эксперимента может быть оправдана только одна теория явлений. Определение удельных теплоемкостей двух тел одного и того же рода, нагретых до одинаковой температуры соответственно трением или тепловым потоком, представляет собой типичный пример такого решающего эксперимента. Этот эксперимент был произведен около 140 лет тому назад Румфордом; он нанес смертельный удар субстанциональной теории теплоты. В докладе Румфорда мы читаем:

Часто случается, что обычные житейские дела и занятия предоставляют нам возможности наблюдения некоторых наиболее любопытных процессов природы; очень интересные физические эксперименты нередко можно сделать без особых забот или затрат с помощью механизма, придуманного для выполнения простых механических задач в ремеслах и производстве.

У меня очень часто были случаи для подобных наблюдений, и я убеждался, что привычка быстро реагировать на все, что встречается в обычном ходе деловой жизни, приводила, так сказать, случайно или вольной игрой воображения, возникающей под влиянием размышлений над самыми обычными явлениями, к полезным сомнениям и разумным планам исследования и совершенствования гораздо чаще, чем все самые напряженные размышления физиков в часы, специально отведенные для научных занятий...

Недавно, будучи обязанным наблюдать за сверлением пушек в мастерских военного арсенала в Мюнхене, я был удивлен очень значительной степенью теплоты, которую приобретала медная пушка за короткое время сверления; еще интенсивнее (гораздо интенсивнее, чем теплота кипящей воды, как я обнаружил опытом) была теплота металлических стружек, отделенных от пушки при сверлении...

Откуда приходит теплота, фактически произведенная в вышеупомянутом механическом процессе?

Доставляется ли она металлическими стружками, которые отделяются при сверлении от твердой массы металла?

Если бы это было так, то, согласно современному учению о скрытой теплоте и о теплороде, теплоемкость их не только должна была измениться, но само изменение это должно быть достаточно велико, чтобы объяснить всю произведенную теплоту.

Но никакого такого изменения не было; я обнаружил это, взяв равные по весу количества этих стружек, а также тонких полосок той же самой металлической болванки, отделенных мелкой пилкой, и положив их при одинаковой температуре (температуре кипящей воды) в сосуды с холодной водой, взятой в одинаковых количествах (например, при температуре 59,5°F [Фаренгейта]); вода, в которую были положены стружки, судя по всему, не нагрелась больше или меньше, чем другая часть воды, в которую были положены полоски металла.

Наконец, мы подходим к выводу Румфорда:

Обсуждая этот предмет, мы не должны забывать учета того самого замечательного обстоятельства, что источник теплоты, порожденной трением, оказался в этих экспериментах явно неисчерпаем.

Совершенно необходимо добавить, что это нечто, которое любое изолированное тело или система тел может непрерывно поставлять без ограничения,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату