Другой недостаток эхолота состоит в том, что пользоваться им можно только при отсутствии сильной качки. Если судно сильно качает, то ультразвуковая волна эхолота будет направлена то прямо на дно, то влево или вправо, и точно измерить глубину моря не удастся.
И всё-таки эхолот в настоящее время незаменим благодаря своим достоинствам — удобству пользования и возможности быстрого измерения больших глубин, где обычный лот почти непригоден.
У эхолота есть и ещё одно очень важное для учёных и моряков свойство. Он может не только показывать глубину моря, но и определять характер дна. Скалистое дно хорошо отражает ультразвуковую волну, поэтому эхо получается резким и достаточно сильным. Если же дно покрыто мягким илом, то значительная часть энергии ультразвука поглощается, и эхо оказывается слабым, размазанным. При песчаном дне эхо имеет также иной характер. А в тех случаях, когда каменистое дно покрыто тонким слоем ила, эхо получается двойным (рис. 12).
Если в самой толще воды имеются какие-либо предметы, способные отражать ультразвук, то эхолот их сразу обнаружит. Этим свойством сейчас широко пользуются при разведке косяков рыбы. Ещё два-три десятилетия назад нельзя было и мечтать о таком надёжном способе промысловой разведки.
Грунтовая трубка
Мы уже говорили о том, какую важную роль играет изучение грунта, покрывающего морское дно. Учёные стремятся проникнуть в толщу дна как можно глубже.
В 1905 году шведский океанограф Экман усовершенствовал трубчатый лот — удлинил трубу и снабдил её специальным приспособлением, облегчающим извлечение пробы грунта. Для устойчивости к трубке прикреплялся стержень с крыльями, похожими на оперение авиационных бомб. В таком виде прибор дожил до наших дней и употребляется на небольших судах, когда нельзя использовать более совершенные приборы.
Схема устройства трубки Экмана дана на рис. 13;
В 1925–1927 годах немецкая экспедиция на корабле «Метеор» получила такой трубкой большое количество проб грунта в Атлантическом океане. Подобная трубка улучшенной конструкции и большей длины применялась советскими учёными (1924–1930 гг.) в Баренцевом, Белом и Карском морях. Были получены столбики грунта рекордной для того времени высоты — почти в 1,5 метра. Ещё более высоких результатов добились сотрудники гидрографического судна «1-е Мая» во время работ на Чёрном море в 1928–1929 годах. Гидрографы ещё удлинили трубку и утяжелили её. Когда такая трубка со свинцовым грузом в 400 килограммов падала на дно, то на палубе корабля стоял грохот от бешено вращающейся лебёдки, весь корпус судна содрогался. С силой врезалась трубка в грунт на глубине в две тысячи метров, а то и больше; в этот момент трос резко ослабевал.
С помощью такой трубки гидрографу В. Снежинскому удалось получить столбики грунта почти 5 метров высотой.
Подобную же трубку применяли наши учёные на Баренцевом море в 1932–1935 годах, но там она дала худшие результаты, так как под тонким слоем современных мягких илов оказались очень плотные ледниковые глины. Попав в такие глины, трубка нередко гнулась, и длина столбиков лишь немного превысила 2 метра.
В 1934 году американский учёный Пигго изобрёл новый трубчатый лот, который был назван «пушкой». Эта «пушка» действительно стреляла. Она состояла из двух отдельных частей: из стального корпуса, куда закладывался заряд пороха и капсюль, и из трубки, являвшейся своеобразным снарядом (рис. 14). Когда такой лот касается дна, происходит выстрел, и трубка с колоссальной силой врезается в грунт. Затем корпус «пушки» и трубка вытаскиваются, как обычно, с помощью лебёдки.
На рис. 14
Пигго исследовал дно Атлантического океана и получил столбики грунта высотой до 3 метров. Это был рекорд для больших глубин. Он дал много для науки.
Затем в 1944 году в Швеции были созданы Петерсоном и Кулленбергом поршневая и вакуумная трубки. Первая сравнительно проста. В ней трос крепится не за трубку, а за поршень, который вдвинут в неё до самого конца. Пока такая «закупоренная» трубка падает, вода сквозь неё не проходит. Достигнув дна, трубка врезается в грунт, а поршень остаётся на поверхности. Этим устраняется одна из главных причин, препятствующих углублению трубки в грунт, — сопротивление воды.
Такая трубка дала хорошие результаты, но ещё лучше оказалась трубка вакуумная (гидростатическая).
Советские конструкторы Н. Сысоев и Е. Кудинов применили для неё ствол от тяжёлого орудия (рис. 15). Одним своим концом ствол через специальный кран соединялся со стальной трубой, составленной из нескольких 10-метровых отрезков, другой конец пушки был закрыт наглухо. Перед спуском этого устройства в воду кран закрывается так, чтобы между трубой и стволом не было никакого сообщения.
Схема вакуумной трубки показана на рис. 16. На нём