ground fire. Even the indomitable Colonel Rudel was shot down many times during the four-year war with the Russians, losing a leg, but still flying at the finish of hostilities in 1945!
The Russians developed their own tank-buster during the Great Patriotic War (the Soviet name for their battle with Germany), the legendary IL-2 Shturmovik. This was the
The IL-2 was easy to fly, and could be repaired under extreme field conditions, and the rugged landing gear could handle muddy or frozen dirt runways. There is even a story that a bent propeller on a Shturmovik was once straightened out with a sledgehammer! Over 35,000 of these amazing planes were built during the war.
There was more to the Shturmovik legend than just simple toughness, though. There was what we Americans might call a “warthog” spirit around the IL-2 crews, and it caused more than a little fear in their German opponents. A quarter century later, these qualities of the Shturmovik would influence the design and development of the A-10. Attacks by Shturmoviks were pressed at altitudes down to just 30 feet/10 meters, and gave the IL-2s devastating lethality against German armor. Near the town of Kursk on July 7th, 1943, a Shturmovik regiment knocked out seventy tanks of the 9th Panzer Division in just twenty minutes, the equivalent of an entire Panzer regiment destroyed![30]
One of the bits of conventional wisdom about World War II is that the United States and their allies drove to victory under a virtual umbrella of airpower. It is therefore ironic that the air forces of the Western Allies never developed a really successful CAS aircraft design during the Second World War. Despite efforts that resulted in marginal designs like the North American A-36 Apache (the precursor to the classic P-51 Mustang) and the British Fairey Battle, most Allied CAS operations were conducted by fighter aircraft. Equipped with rockets, bombs, and fuel tanks filled with napalm (jellied gasoline), these fighter bombers did devastating damage to Axis ground forces around the world.
What the Americans and British did contribute to the science of CAS in World War II was the matter of proper coordination with ground forces. Prior to America’s entry into the war, the USMC had done some pioneering work on developing compatible radio systems for aircraft and ground units, and integrating them into CAS operations. By the middle of the war, Allied ground forces could actually call air strikes onto targets just yards/meters in front of their own positions. The British called their on-call CAS missions “cab-rank” strikes, giving you some idea just how close the support could be. There were similar strikes by 8th and 9th Air Force P-48 Lightning and P-47 Thunderbolt fighter bombers, as well as by the classic F4U Corsairs of the Marines in the Pacific. By the end of the conflict, the Allies had achieved a level of air-ground coordination that has been a benchmark ever since.
The U.S.
The AD-6 version was a single-seat fighter, with an 18-cylinder Wright Cyclone radial engine delivering 2,700 horsepower to a four-bladed propeller. Armament was four 20mm cannon and up to 8,000 lb/3630 kg of bombs and rockets on up to fifteen weapon racks. Stable and reliable as an old plow horse, it was a favorite among flight crews. Despite its being replaced in the strike role by newer supersonic fighter-bombers in the late 1950s and early 1960s, there was still life in the A-1s.
As the war in Vietnam escalated, old Skyraiders were taken out of storage and rebuilt for service in Southeast Asia with the U.S. Navy, Air Force, and Marines and the Republic of Vietnam. The newer jets did not have the ability to put ordnance on targets as well as the slower, old Skyraiders. Their weapons-delivery systems were designed to lob nuclear weapons, not deliver pinpoint bomb strikes. Also, the greater loiter time of the old ADs made it possible for harried ground units to keep CAS aircraft overhead longer. Finally, their ability to absorb battle damage meant that Skyraiders often came home missing big pieces, while the newer supersonic jets were often lost to a single “golden BB” fired from small-caliber weapons. All this meant that a surplus airplane older than some of its pilots was performing the CAS mission better than multi-million-dollar machines designed to deliver nuclear weapons. This had major repercussions when a new CAS airplane was needed in the late 1960s. That airplane would become the A-10.
By the late 1960s, it was clear that the Air Force would need to replace the Skyraider, though not many in the USAF leadership wanted the new bird. From the very beginning, the new CAS aircraft was a bastard child within the USAF. It was designed for a mission they didn’t want, in order to keep the Army and Marines from grabbing a bigger budget slice for CAS. A whole series of inter-service treaties dictated that CAS was a “blue” mission that would be handled for the Army by the USAF.[31] The truth was that the USAF leadership of the day could not have cared less about the CAS mission and the troops on the ground that it was supposed to support. They would have been much happier buying fighters and nuclear-armed bombers to accomplish what they saw as the “real” missions of airpower. Pilots of sleek, fast, pointy-nosed fighters (including those who become USAF generals) think of CAS as “air to mud” combat, and often consider it beneath the dignity of an officer and gentleman. So in reality, the USAF’s desire to control the CAS mission was really just a money and power grab, designed to deny the Army control of money and the airspace above the battlefields of the future.

Just one little problem, though, and that was that the Congress and U.S. Army expected (and forced) the USAF to build a “real” CAS airplane for use in the 1970s. Grudgingly, the USAF complied with the mandate and started the A-X (Attack Experimental) program to accomplish that task as cheaply and quickly as was possible. When the competition for a new A-X prototype was initiated, a number of aircraft companies submitted designs to the USAF for consideration. Two finalists were selected, and in 1972 a fly-off between Northrop’s YA-9A and Fairchild-Republic’s YA-10A was conducted. Northrop’s conventional design was more maneuverable, but Fairchild’s entry was judged to be more survivable in a “high-threat” environment (such as the European Central Front or Korea). Some design changes to accommodate USAF wishes were added, and the first production aircraft were delivered in the spring of 1976. Production ended in the 1980s after 650 had been delivered. In late 1996, some 231 remained in service with the U.S. Air Force, the remainder having been retired into storage or lost operationally. Hopes for foreign sales to the Republic of Korea and Turkey never materialized, as much due to the superb marketing of the F-16 (which was sold as a competitor) as anything else. However, the type will remain in service, mostly with National Guard and Reserve units, well into the 21st century, thanks to the brilliant performance of the A-10 community in Desert Storm.
With our history lesson done for now, let’s have a look at the Warthog. WEFT: Wings, Engines, Fuselage, Tail. These are the four key features you memorize when studying aircraft recognition, and it is a good way to start examining the A-10. For at certain angles, the Hog is almost a dead ringer for the World War II-vintage B-25 Mitchell medium bomber that was used by Jimmy Doolittle’s Tokyo Raiders to bomb Japan. The Mitchell had a reputation for being one of the toughest, most survivable aircraft of the era, and those same qualities are at the core of the A-10’s design.
The A-10’s broad, thick, low-mounted wings are almost perfectly straight. The absence of wing sweep angle tells you right away that the A-10 is a subsonic design. The wingspan is 57 feet, 6 inches/17.53 meters, and the tips are rounded off with a graceful twist. This, by the way, is the last graceful thing you will see on the Warthog’s airframe. There is a stubby pod about mid-span on each wing, and the rubber tire sticking out in the airstream tells you that this is the fairing for the main landing gear. Each wing has five weapons stations: two inboard and three