darkness, currents, and uncharted rocks. Getting lost at sea is easy! History is replete with stories of amphibious landings which hit the wrong beach, even when the right one was in sight from the amphibious ships a few thousand yards away. Now, just imagine what kinds of errors are possible from 50 nm/91 km out!
The GPS receiver, with positional accuracy of a few yards/meters and timing accuracy within milliseconds, is the most valuable navigational system for keeping LCAC on course and on time. But a new system is coming on-line to assist that. Known as the Amphibious Assault Direction System (AN/KSQ-1), it ties every ship, aircraft, and landing craft in an ARG/MEU (SOC) into a common network, feeding positional data from each unit's onboard GPS system. This lets the LFOC and CIC monitor real-time positional, heading, and velocity information on every friendly unit in the area. This system should eliminate many of the coordination problems inherent to amphibious operations.
Riding aboard an LCAC is different from any other boating experience you will ever have. First, the entire LCAC is buttoned up and the bow and stern ramps raised. When the turbine engines start, the noise is tremendous, and safety rules prohibit any exposed personnel on deck during transit. Even inside the deckhouses, earplugs and/or hearing protection is a necessity to make the turbine whine endurable. To back out of the well deck of a ship like
Once clear of the well deck, the pilot usually takes the craft to a holding/ assembly area where it waits for any other LCACs being launched. If necessary in a 'hot' area, the LCAC(s) pick up an escort of AH-1W Cobra attack helicopters. Now the pilot turns the LCAC to its desired heading, and takes off. The acceleration is smooth and rapid, and you have the feeling of riding on a magic carpet, or perhaps a really fast vacuum cleaner! While there is a fair amount of vibration, it is not the pounding that you feel in a conventional landing craft on a rough sea. The lift air flowing under the skirt tends to smooth out the wave action, making transits under all but the worst conditions quite tolerable. Speeds of 40 to 50 kt/73.2 to 91.4 kph can easily be maintained except for handing a maximum (sixty-ton-plus) load in heavy seas. For the pilot, the LCAC is easy to handle, though it tends to sideslip in a hard turn. This is because there is no keel or rudder to 'bite' into the water to hold it steady. The LCAC is actually 'flying' above the water, and the sensation is not unlike riding in a low-flying helicopter. The LCAC is quite maneuverable at all speed ranges. And it is stable and easy to handle, even at slow speeds in confined areas like a well deck or narrow rivers or swamps.
During transit, the navigator constantly passes course corrections and speed recommendations to the pilot, so that they will hit the target area accurately and on time. This notion that a landing craft can transit 50 nm/91 km or more and arrive on time at a pre-planned point is still a source of wonder to old amphibious warfare veterans. In fact, as noted earlier, the ability of beachmasters of the Navy's beach control teams to receive troops, vehicles, and cargo has not kept up with the ability of ships to off-load them, even from over the horizon. Even the introduction of computerized bar-code tracking linked to satellite communication systems has not solved the traffic jams that develop on a busy beach. This is one reason why LCACs don't always stop at the surf-line to dump their cargo. The LCAC's capability to transit from water to land, and continue inland for a distance, is still being explored. For example, with a pre-surveyed GPS navigational point, an LCAC might unload an artillery battery several thousand yards/meters inland, far away from the maddening traffic jam of the beach. Such concepts are being integrated into the doctrine of Marine amphibious units right now.
As you approach the shoreline, the beach comes up fast, and there is the feeling of an impending crash into a oncoming wall. Then the pilot begins to retard the throttles a bit and decides where to transit onto the beach. In fact, when you actually 'hit' dry land, the feeling is like going up the ramp of a parking garage. The pilot then follows the instructions of the beach control party on where to stop and unload. The lift fans are killed, the skirt deflates, and the LCAC is ready to disembark its cargo. Once the bow and/or stern ramps are lowered, vehicles and troops can off-load in just a minute or two. For palletized cargo or containers, it takes a bit longer, as a forklift or palletized lifter vehicle is needed to unload the cargo deck. Unloading completed, the crew buttons up, fires up the engines, and heads back to the mother ship for another load. In the case of a LHD or LSD where two or more LCAC may be vying for space in a well deck, the craft are parked nose to tail. Then, with the bow and stern ramps lowered, vehicles drive through one LCACs to reach the other one.
While the LCAC has done quite well in its first decade of service, don't think that hauling cargo, vehicles, and Marines is all that the Navy wants to do with it. Concepts to expand the options for LCAC include increased personnel capacity, using a cargo deck passenger module. LCAC is now limited to just 23 passengers in the deckhouse spaces, but the module can carry up to 180 personnel (plus the 23 in the deckhouse) per trip. Configured for medical evacuation, the same module might carry up to 50 litter cases per trip, as well as 23 walking wounded in the deckhouse. This is important to the Marines, given the 'golden hour' of combat trauma cases. Survival rates for wounded personnel are directly related to how quickly they reach medical facilities aboard the LHD/LHD or LPD. The Navy has ordered a number of these modules, and they should be coming into the force soon.
Another use for LCACs is in mine warfare. The Navy has funded demonstrations of LCACs equipped to both lay and sweep underwater mines, as well as a rocket propelled system that throws an explosive mine-clearing charge over a beach landing zone from offshore. There have also been studies of using the LCAC as a gunboat to support landing operations. Though the LCACs are unarmed (mounts for three machine guns are normally not used), there are concepts for mounting 20mm and 25mm cannons. The Marines have demonstrated the ability to fire vehicle mounted weapons such as the LAV's 25mm Bushmaster cannon and the 120mm gun on a M-1A1 tank from landing craft.
With only ninety-one LCACs either delivered or under contract, it is likely that the Navy and Marines will jealously guard them for their primary mission as ship-to-shore delivery systems. In this role it is not, of course, ideal (like all designs, it is a set of engineering compromises). For one thing, it is more vulnerable than conventional landing craft to enemy fire, but has the speed and maneuverability to avoid many threats. And the LCAC cannot handle extreme seastates as well as a conventional landing craft like the LCU or LCM, but it can land cargo under a wider variety of coastal conditions. Still, don't get the idea that LCACs are not tough. One unit, LCAC-42 (landing craft have only pennant numbers, not names), has survived two major incidents, and is still in service. It hit a protruding coral head sideways during one exercise, and struck a large navigation buoy on another, but got off with only minor damage and is still hauling for the Pacific Fleet. In over ten years of LCAC service, the U.S. Navy has yet to lose even one in operations. Plan on seeing LCACs around for a long time to come. A SLEP (Service Life Extension Program) will extend the planned twenty-year service life of the LCAC fleet to a full thirty years. Next-generation landing craft will be air-cushioned. Scaled-down designs for LCM-SIZED LCACs are being considered as general- purpose deliver platforms for the ARGs of the mid-21st century. Not bad for a giant air hockey puck.
Landing Craft, Utility (LCU)
It might surprise you that in an era of satellite navigation and computerized logistics, a large percentage of landing craft used by the Navy and Marines are virtually identical to World War II types. Many such craft will continue to serve well into the 21st century. Currently, the largest of these is the Landing Craft, Utility (LCU). In fact, the LCU is the largest Navy vessel that is not commanded by an officer. The LCU is a