1980s. But the most painful loss for fighter crews was the Sidewinder replacement.

Originally, the AIM-9's successor was to be a European-built system known as the AIM-132 Advanced Short Range Air-to-Air Missile (ASRAAM), built by a consortium of British Aerospace and Bodenseewerk Geratechnik (BTG) of Germany. Under a multi-national Memorandum of Understanding (MOU) signed in 1981 by the United States and a number of NATO nations, all agreed to adopt AMRAAM and ASRAAM as their standard AAMs. Unfortunately, the United States and Germany dropped out of the program. While the AIM-132 has continued development, and will go into service with the Royal Air Force in the late 90s, the result was disarray in Western AAM procurement.

Today the next generation of American short-range AAMs is being conceived in the halls of the Pentagon and the engineering design shops of Hughes and Raytheon. The missile is tentatively called the AIM-9X, and if it goes into production, it should put the United States back into the game of short-range dogfighting in the 21st century. In January 1995, Hughes Missile Systems and Raytheon Corporation won a competition to develop separate proposals for the new model of Sidewinder. Final selection of a prime contractor will happen in 1996, with service introduction sometime in the early years of the 21st century. While the exact configurations that the two contract teams will submit to the AIM-9X JPO are proprietary, there are probably many common features. These include:

• Seeker—The seeker will probably be a staring (constantly viewing the target) IIR array with many detector-array elements, each one sensitive enough to track a target at all aspects. It will be backed up by an advanced signal processor, designed to actually look for the signature of a particular aircraft configuration (such as a Mirage 2000 or a MiG- 29), providing it with a basic NCTR function. Also, it will be capable of tracking targets from a high 'off-boresight' mode (the ability to lock up a target well off the launch aircraft's centerline — maybe more than 60deg — and then fly directly off the launch rail to a hit).

• Helmet-Mounted Sight (HMS)—The Navy and Air Force have finally accepted the inevitability of the HMS as the visual sighting system for future manned combat aircraft. The big advance planned for the U.S. HMS will be that HUD symbology will be superimposed on the sight glass, directly in front of the user's right eye. Studies indicate that this will provide a two-to-four-second improvement in overall reaction time to launch an AIM-9X, and will also make AMRAAM shots more rapid and accurate.

• Warhead—The current generation of ABF warheads, while quite adequate for killing a MiG-23 Flogger or MiG-25 Foxbat, may not perform as well against newer Russian and Western designs. These blast-fragmentation warheads were designed to perforate the target's fuel tanks, igniting catastrophic fires on any plane not equipped with self-sealing fuel tanks and fire suppression systems. Plans are afoot to design warheads that specifically target other aircraft systems like the engines or the crew. This will keep the AIM-9X a highly lethal contender in the endless contest between the warhead engineers and the 'vulnerability engineers' who design aircraft protective systems for use well into the middle of the 21st century.

• Propulsion/Guidance—For the first time in a Western AAM, the AIM-9X will utilize an active thrust vectoring propulsion system, which will radically improve maneuverability. It appears that whatever design team wins the competition, the winner will make use of a Raytheon-designed and — developed fin control system known as Box Office. Composed of four tail-mounted maneuvering fins (there are no mid-body guidance fins as in AMRAAM), Box Office will make 60-G maneuvers possible for the first time on a U.S. AAM.

When all these components are integrated and the inevitable software bugs are eventually tracked down and stamped out, the AIM-9X will carry the proud Sidewinder tradition into a new century. With the will, the money, and an efficient management team, Dr. McLean's vision of an agile, lightweight, intelligent, and deadly missile will take to the skies on wings he could never have imagined back in that desert garage lab. Let's hope it works out; for without it, tomorrow's U.S. fighter pilots could be outgunned as well as outnumbered by systems made elsewhere.

AIR-TO-GROUND ORDNANCE

On the third day of the Persian Gulf War in 1991, General Charles A. Horner held a press conference in Riyadh, Saudi Arabia, to discuss how things were going. Known as the 'four o'clock follies,' these daily briefings were rather dull until General Horner started showing gun camera film (videotape, actually) from the various strikes of the first night of Desert Storm. A stunned hush, punctuated by an occasional grim chuckle or curse, fell over the 'newsies' as they became the first witnesses of the revolution in the accuracy, range, and precision of modern airborne munitions. In clip after clip, the taped footage showed Iraqi command and control centers, bunkers, aircraft shelters, and other targets blowing up under a hail of guided bombs and other ordnance. Perhaps the most impressive demonstration of modern precision-guided munitions (PGMs) were a pair of clips from two F-117A Nighthawks. The target was the central communications and switching center in downtown Baghdad, known by Coalition planners as the 'AT&T Building.' Heavily overbuilt, it had a reinforced concrete roof designed to resist penetration and blast by normal general purpose (GP) bombs. It did not last long, though. The first F-117A arrived over the target and dropped a 2,000 lb./909.1 kg. laser-guided bomb (LGB) with a special penetrating warhead, blowing a huge hole in the reinforced roof of the building. Several minutes later, to allow time for the dust and other debris to settle (and thus not block the Nighthawk's thermal targeting system), another F-117, sighting on the edges of the hole in the roof, dropped two laser-guided bombs of its own into the hole from the first bomb and into the building's core shaft. Armed with GP warheads (blast and fragmentation), they blew out all four sides of the building, leaving it incapable of operations for the duration of the conflict. So specific are the characteristics of individual types of weapons that you now use one kind to blow open a hole and another type to fly through the hole to kill what you really want to be dead inside.Fighter pilots make movies. Bomber pilots make history! — OLD BOMBER PILOT BARROOM CHANT

That statement expresses a great truth about airpower. Nobody has ever won, or ever will win, a war by shooting down MiGs, Mirages, or whatever else the enemy may be flying against you. Airpower only helps win wars when you destroy things that are critically important to an enemy on the ground. Airpower's inherent limitation is staying power. Deadly machines like F-16s and B-1Bs simply cannot stay over a piece of battlefield forever. Therefore, it is vital that when a Joint Forces Air Component Commander (JFACC) commits his expensive and limited air resources, he must make them capable of delivering a 'bolt from the blue.' Not just deadly to what or who you want to destroy, but shocking and frightening to the survivors to the point where their morale is broken and their ability to fight effectively is destroyed. There is a story from Operation Desert Storm, about the commander of an Iraqi ground unit who surrendered with his entire unit several weeks into the aerial bombardment. When asked by his interrogator why he had surrendered, he responded, 'It was the B-52s.' When the interrogator pointed out that his unit had never been bombed by B-52s, the Iraqi officer replied, 'That's true. But we saw units that had been.' That is the ultimate goal of anyone using airpower: to so demoralize the survivors of bombing raids they don't even want to fight. They just give up. That's how you really make history.

Now it needs to be said that much of the effectiveness of the Desert Storm bombing campaign was due not only to dropping an overwhelming weight of ordnance on the targets in Iraq and Kuwait, but also to making sure that the right targets were getting hit by the right aircraft with the right munitions for those targets. For example, it would have been counterproductive for the huge B-52s, loaded with 'dumb,' unguided, general purpose bombs, to hit targets in downtown Baghdad. City blocks of buildings would have been flattened, causing thousands of civilian casualties, and the real targets, Saddam Hussein's hardened command bunkers, would have survived without harm. Moreover, because of the heavy air defense over Baghdad, we would have lost many aircraft just making the attempt. Colonel John Warden of the Air Command and Staff College is fond of saying, 'Every bomb is a political bomb, with political costs, political benefits, and political effects.' It is therefore doubtful that such a campaign would have ever been attempted by the Bush Administration given the political considerations of Coalition warfare and the sensibilities of the domestic media.

What actually happened was that Major General 'Buster' Glosson and his 'Black Hole' team developed a plan

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×