как единица силы и секунда как единица времени;

3) система МКСА (1901 г.), основы которой были созданы итальянским ученым Дж. Джорджи, который предложил в качестве единиц системы МКСА метр, килограмм, секунду и ампер.

На сегодняшний день в мировой науке существует неисчислимое количество всевозможных систем единиц физических величин, а также немало так называемых внесистемных единиц. Это, конечно, приводит к определенным неудобствам при вычислениях, вынуждая прибегать к пересчету при переводе физических величин из одной системы единиц в другую. Сложилась ситуация, при которой возникла серьезная необходимость унификации единиц измерения. Требовалось создать такую систему единиц физических величин, которая подходила бы для большинства различных отраслей области измерений. Причем в роли главного акцента должен был звучать принцип когерентности, подразумевающий под собой, что единица коэффициента пропорциональности равна в уравнениях связи между физическими величинами. Подобный проект был создан в 1954 г. комиссией по разработке единой Международной системы единиц. Он носил название «проект Международной системы единиц» и был в конце концов утвержден Генеральной конференцией по мерам и весам. Таким образом, система, основанная на семи основных единицах, стала называться Международной системой единиц, или сокращенно СИ, что происходит от аббревиатуры французского наименования «Systeme International* (SI). Международная система единиц, или сокращенно СИ, содержит семь основных, две дополнительных, а также несколько внесистемных, логарифмических единиц измерения, что можно видеть в таблице 1.

Таблица 1

Международная система единиц или СИ

Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:

1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

2) килограмм считается приравненным к существующему международному прототипу килограмма;

3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;

4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;

5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;

6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в C 12 массой 0,012 кг.

Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17 48 '. А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:

1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);

2) диоптрия – сила света для оптических приборов;

3) реактивная мощность – Вар (ВА);

4) астрономическая единица (а. е.) – 149,6 млн км;

5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;

6) вместимость – литр;

7) площадь – гектар (га).

Кроме того, логарифмические единицы традиционно делят на абсолютные и относительные. Первые абсолютные логарифмические единицы – это десятичный логарифм соотношения физической величины и нормированного значения Относительная логарифмическая единица образуется как десятичный логарифм отношения любых двух однородных величин. Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.

7. Физические величины и измерения

Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан.

У физических величин есть качественные и количественные характеристики.

Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.

Таким образом, размерность длины, массы и времени:

dim*l = L,

dim*m = M,

dim*t = T.

Для производной величины размерность выражается посредством размерности основных величин и степенного одночлена:

dim*Y = L k ? M 1 ? T m,

где k, I, m– показатели степени размерности основных величин.

Показатель степени размерности может принимать различные значения и разные знаки, может быть как целым, так и дробным, может принимать значение ноль. Если при определении размерности производной величины все показатели степени размерности равны нулю, то основание степени, соответственно, принимает значение единицы, таким образом, величина является безразмерной.

Размерность производной величины может также определяться как отношение одноименных величин, тогда величина является относительной. Размерность относительной величины может также быть логарифмической.

Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами.

У реперных шкал порядка есть существенный недостаток: неопределенная величина интервалов между

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×