множеством всех лжецов, что невозможно, так как все отъявленные лжецы состоят членами одного клуба, в то время как все лжецы не состоят членами одного клуба. В отличие от только что приведенного доказательства наше первое доказательство позволяет установить дополнительные подробности: всякий; кто утверждает, что он непризнанный рыцарь, должен быть непризнанным рыцарем, а всякий, кто утверждает, что он отъявленный лжец, должен быть неотъявленным лжецом.

2. Доказывая, что все лжецы не состоят членами одного клуба, мы использовали только условие G. Условия E1, E2 и C нам не понадобились. Значит, из одного лишь условия G следует, что все лжецы не состоят членами одного клуба. Более того, условие G эквивалентно утверждению, что все лжецы не состоят членами одного клуба. Действительно, будем считать известным, что все лжецы не состоят членами одного клуба. Тогда условие G можно вывести следующим образом:

Выберем любой клуб C. Так как все лжецы не состоят членами одного клуба, то C не множество всех лжецов. Следовательно, либо членом клуба C состоит какой-нибудь рыцарь, либо какой-нибудь лжец не состоит членом клуба C. Если какой-нибудь рыцарь состоит членом клуба C, то он заведомо утверждает, что состоит членом этого клуба (так как он всегда говорит только правду). Если бы какой-нибудь лжец не состоял членом клуба C, то он утверждал бы, что состоит членом этого клуба (так как он лжет). Следовательно, и в том и в другом случае кто-нибудь утверждает, что состоит членом клуба C.

265. Гёделевы острова в общем и целом.

Рассмотрим теперь любой остров, населенный рыцарями и лжецами, на котором имеются клубы. Предполагается, что, кроме рыцарей и лжецов, на острове нет других обитателей. Назовем остров гёделевым, если выполняется условие G, то есть если для любого клуба C найдется по крайней мере один островитянин, утверждающий, что состоит членом этого клуба.

Как-то раз инспектор Крэг посетил такой остров, населенный рыцарями и лжецами, состоящими членами клубов. Крэгу (человеку с необычайно широким кругом интересов, теоретические познания которого не уступают его практической сметке) захотелось узнать, находится ли он на гёделевом острове. Ему удалось собрать следующие сведения. Каждый клуб носит имя одного из островитян, и у каждого островитянина есть клуб, названный его именем. Островитянин не обязательно состоит членом клуба, носящего его имя. Островитянина, который состоит членом клуба, названного в его честь, называют номинабельным. Островитянина, который не состоит членом клуба, названного его именем, называют неноминабельным. Об островитянине X говорят, что он друг островитянина Y, если X подтверждает номинабельность островитянина Y.

Крэг не знал, находится ли он на гёделевом острове до тех пор, пока не обнаружил, что культурная жизнь на острове удовлетворяет некоторому условию, которое мы назовем условием H.

H: Для любого клуба C существует другой клуб D, такой, что у каждого члена клуба D по крайней мере один друг состоит членом клуба C, а у каждого не члена клуба D по крайней мере один друг не состоит членом клуба C.

Из условия H Крэг вывел заключение относительно того, гёделев ли тот остров, на котором он находился. К какому заключению пришел инспектор Крэг?

Решение. Остров гёделев. Выберем любой клуб C. Пусть D — клуб, заданный условием H. Клуб D носит имя какого-нибудь островитянина, например островитянина по имени Джон. Сам Джон либо состоит, либо не состоит членом клуба D. Предположим, что Джон состоит членом клуба D. Тогда у него есть друг (назовем его Джек) в клубе C, который подтверждает, что Джон номинабелен. Поскольку Джон состоит членом клуба D, то Джон действительно номинабелен. Значит, Джек рыцарь. Следовательно, Джек рыцарь и состоит членом клуба C, поэтому Джек утверждает, что состоит членом клуба C.

Предположим, что Джон не состоит членом клуба D. Тогда у Джона есть друг (назовем его Джим), не состоящий членом клуба C и подтверждающий, что Джон номинабелен. Поскольку Джон не состоит членом клуба D, то Джон в действительности неноминабелен. Значит, Джим лжец. Итак, Джим лжец и не состоит членом клуба C, поэтому Джим солгал бы и утверждал бы, что состоит членом клуба C.

Следовательно, независимо от того, состоит или не состоит Джон членом клуба D, существует островитянин, утверждающий, что он состоит членом клуба C.

Примечание. Объединяя решения задач 264 и 265, можно утверждать, что на любом острове, удовлетворяющем условиям E1, E2, C и H, заведомо найдется непризнанный рыцарь и неотъявленный лжец. Этот результат в действительности представляет собой «замаскированную» форму знаменитой теоремы Гёделя о неполноте, к которой мы еще вернемся в разделе В этой главы.

Если вы хотите предложить одному из ваших друзей действительно трудную задачу, задайте ему задачу 264 для острова, удовлетворяющего условиям E1, E2, C и H, (об условии G пока умолчите). Выведет ли ваш приятель самостоятельно условие G?

Б. Дважды гёделевы острова

Задачи этого раздела представляют более специальный интерес, и ознакомление с ними можно отложить до прочтения раздела B.

Под дважды гёделевыми островами мы будем понимать острова рыцарей и лжецов, объединенные в клубы, удовлетворяющие условию CG.

CG: для любых двух клубов C1, C2 найдутся островитяне A, B, о которых известно следующее: A утверждает, что B состоит членом клуба C1, а B утверждает, что A состоит членом клуба C2.

Насколько мне известно, из условия CG не следует условие G, а из условия G не следует условие CG. Оба условия выглядят совершенно независимыми, поэтому (насколько мне известно) дважды гёделевы острова не обязательно должны быть гёделевыми островами.

Изучение дважды гёделевых островов — мой «конек».

Задачи, связанные с ними, имеют такое же отношение к парадоксу Журдэна с двусторонней карточкой (см. задачу 254 в предыдущей главе), какое задачи о гёделевых островах имеют к парадоксу лжецов.

266. Дважды гёделев остров S.

Однажды мне посчастливилось открыть дважды гёделев остров S, для которого выполняются условия E1, E2 и C острова G.

а) Можно ли определить, найдется ли на острове S хоть один непризнанный рыцарь? Что можно сказать о неотъявленном лжеце?

б) Можно ли установить, состоят ли рыцари острова S членами одного клуба? A лжецы?

Решение. Начнем со второй части задачи. Если все рыцари острова состоят членами одного клуба, то (по условию C) все лжецы также состоят членами одного клуба, а если все лжецы острова S состоят членами одного клуба, то (в силу того же условия C) рыцари также состоят членами одного клуба. Следовательно, если представители одной из двух групп населения острова (либо рыцари, либо лжецы) состоят членами одного клуба, то представители каждой из двух групп состоят членами одного клуба. Итак, предположим, что все рыцари состоят членами одного клуба и что все лжецы состоят членами одного клуба. Тогда по условию CG должны найтись островитяне A, B, высказывающие следующие утверждения:

A: B — лжец.

B: A — рыцарь.

Как показано в решении задачи 259 в предыдущей главе, это невозможно. Следовательно, все рыцари не могут состоять членами одного клуба, и все лжецы не могут состоять членами одного клуба.

Что касается первой половины задачи, то ее можно решить двумя способами. Первый из них проще

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату