Конструкция первого такого прибора принадлежит французскому физику Полю Ланжевену и русскому эмигранту, инженеру Петру Шиловскому. Но запатентован он был англичанином Льюисом Ричардсоном вскоре после гибели «Титаника».

Так или иначе, но советская подлодка Л-3 произвела первую атаку на Балтике, пользуясь данными шумопеленгаторов, 13 ноября 1942 года, в самый разгар Второй мировой войны.

Эхо «холодной войны»

В эпоху «холодной войны», когда начиная с 50-х годов XX века в глубинах Мирового океана начали противостоять друг другу гигантские атомные подводные флоты СССР и США, техника выслеживания субмарин еще более усовершенствовалась. К тому времени гидроакустическими станциями, опускаемыми под воду на тросах, обзавелись и вертолеты. А противолодочные самолеты стали сбрасывать гидроакустические буи, которые устанавливали шумы субмарин или отраженное их корпусами эхо от взрывов сбрасываемых теми же самолетами небольших глубинных бомб. Информация передавалась на борт самолета-охотника, где анализировалась, и по сигналам определялись координаты подлодки.

Для обнаружения субмарины в океане ныне используют самое различное оборудование и аппаратуру. Подлодка может быть засечена со спутника, например, по вихревому следу. Самолет с гравитометром и магнитометром на борту способен обнаружить ее по изменениям магпитного и гравитационного поля. Надводные кораблиохотники отслеживают перемещения субмарины с помощью гидроакустических буев, буксируемых и стационарных гидроантенн. И наконец, подводная лодка-охотник может обнаружить цель с помощью активного гидролокатора.

Мало того, в конце 50-х годов Соединенные Штаты пошли на огромные расходы, создав у побережья Атлантики и Тихого океана гигантские линии стационарных подводных гидрофонов. Звукоприемники соединялись кабелями с береговыми постами обработки сигналов.

Были разработаны специальные программы и процессоры, ставшие основой самых мощных в мире вычислительных комплексов. По характерному спектру сигнала компьютер может определить тип лодки, удаление до нее, ее скорость и курс.

Аналогичная компьютерная аппаратура только меньших размеров стала появляться и на борту самих субмарин. В результате созданный к началу 90-х годов прошлого века американский комплекс AN/UQQ-1 с буксируемыми антеннами способен уверенно обнаружить и классифицировать цель на дальности до 140 км, а в ряде случаев — и до 560 км!

Создатели субмарин ответили на это усовершенствованиями конструкции самих подлодок. Все силовые агрегаты субмарин стали размещать на шумопоглощающих фундаментах, широко применяли резинометаллические амортизаторы, упругие вставки в трубопроводах, а внешние корпуса подлодок начали укутывать в резиноподобные покрытия, слабо отражающие сигналы гидролокаторов.

Но главное внимание обратили на совершенствование винтов. Сейчас все подлодки оборудованы тихоходными винтами с саблевидными лопастями, работающими практически бесшумно. И поговаривают о том, что вскоре появятся субмарины вообще без винтов — с водометами или даже… неким подобием ласт и рыбьих плавников.

От статики к динамике

В итоге стационарные гидроакустические системы потеряли свою значимость и из-за снижения эффективности были законсервированы. Частично их стали использовать в научных целях, например, для прослушивания песен китов и иных звуков, издаваемых обитателями океана.

А для решения задач противолодочной обороны в США и других морских странах стали создавать быстроразвертываемые многоэлементные региональные системы освещения подводной обстановки (СОПО). Их доставляют на самолетах, надводных кораблях или подлодках в районы, где ожидаются боевые действия или маневры военно-морского флота потенциального противника. Датчики сбрасывают в море, подобно тем же гидробуям или донным минам, и они, затаившись в глубине, ловят малейшие шумы. Полученная информация передается на определенной частоте на заранее развернутые специальные антенны. Командный пункт СОПО производит анализ обстановки и с помощью космической связи передает все данные на командный пункт объединенного оперативного формирования.

Для наглядности добавим, что акустические излучатели типа LELFAS имеют длину около 3 м и внешне похожи на небольшие торпеды. Кстати, их можно выстреливать с помощью стандартного торпедного аппарата, а рассчитаны они на непрерывную работу в течение 30 суток.

Одна подлодка, имеющая на борту четыре комплекта антенн быстрого развертывания, способна перекрыть площадь более 2500 квадратных миль. А группа из трех кораблей, развернув подобную систему, а также имея на борту буксируемые излучатели для подсветки целей и противолодочные вертолеты, может в течение длительного времени контролировать акваторию общей площадью более 30 000 квадратных миль. И ни одна сколько-нибудь крупная подводная цель не останется в этом квадрате незамеченной.

Маскировка в рыбьем косяке

Что же теперь — подводному флоту становится на прикол? Не скажите… Есть свои недостатки и у СОПО. Они способны эффективно работать лишь в том случае, если целей в районе относительно немного и они сами довольно крупных размеров. Но как отследить перемещение, скажем, обитателей целого рыбьего косяка, если рыбы, его составляющие, вдруг кинутся в разные стороны?

Между тем, именно так будут действовать, по прогнозам экспертов, подлодки в ближайшем будущем. К району, интересующему командование, будет послана большая подлодка-матка. Не приближаясь особо близко к кораблям противника, она выпустит с десяток автоматических субмарин поменьше. А те, словно матрешки, будут содержать в себе другие, еще меньшие субмарины-роботы, предназначенные для выполнения самых разных задач — от разведки до нанесения минно-торпедных ударов. И никакая СОПО пока не способна обнаружить подводные аппараты величиной с рыбу среднего размера, да еще закамуфлированную, скажем, под тунца. Так что остается пока гадать, какие средства противодействия будут придуманы против них.

Публикацию подготовил С. РЫБАКОВ

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Энергетика на уровне молекул

Для плеера или мобильного телефона нужны аккумуляторы. А какими должны быть источники питания для наноприборов, размеры которых в сотни и тысячи раз меньше? Одним из первых над подобным вопросом задумался Чжун Линь Ван — директор Центра исследования наноструктур Технологического института штата Джорджия.

Он отнюдь не новичок в наномире. В 1998 году он создал самые маленькие в мире нановесы, а в 2000 году — наноленты, о которых пойдет речь ниже.

«Сегодня мы начинаем создавать чрезвычайно малые устройства отбора энергии для мира наномасштабных систем, где размеры исчисляются миллиардными долями метра, — рассказал профессор

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×