молекулярная биология незаменимы для выявления деталей работы молекулярных путей, вовлеченных в развитие, вплоть до уровня взаимодействия атомов биологических молекул. Клеточная биология позволяет объяснить, как за счет взаимодействия разных молекулярных путей обеспечивается контроль поведения отдельных клеток. Исследуя более высокий уровень организации, физиология, иммунология и нейробиология раскрывают способы коммуникации и координации множества клеток.

Все упомянутые дисциплины относятся к областям медицины или биологии, в которых традиционно и проводились исследования по эмбриологии человека. Однако последнее время вклад в понимание развития человека внесли также области науки, которые на первый взгляд вообще не имеют отношения к этой теме: математика, информатика и даже философия. Они не проясняли конкретные детали (что и когда делает та или иная клетка), но затрагивали фундаментальные вопросы, связанные с развитием, например: как простое может стать сложным? как механизмы развития, неустойчивые по отношению к случайным ошибкам, могут обеспечивать высокую точность воспроизведения конечного результата? и не слишком ли развитие человека сложно для того, чтобы его могли полностью понять даже интеллектуально развитые люди? Последний из этих вопросов остается открытым, и предметом спора является слово «полностью». Однако в решении первых двух вопросов удалось достичь значительного прогресса. Ответ кроется в двух смежных концепциях: «эмерджентность» и «адаптивная самоорганизация». Это фактически две стороны одного и того же явления. «Эмерджентность» – это возникновение сложных структур и вариантов поведения из простых составных частей и правил; этот термин, как правило, используют те, кто смотрит на систему «вниз» с позиции «поведения на высоком уровне». «Адаптивная самоорганизация» – это «взгляд вверх»; этот термин позволяет описать, как применение этих простых правил к компонентам системы приводит к их коллективному поведению – выполнению сложных и тонких задач большого пространственного масштаба.[1]

Именно благодаря адаптивной самоорганизации неживые молекулы могут создать живую клетку, а клетки с ограниченными индивидуальными возможностями – сформировать способный на многое многоклеточный организм. Адаптивная самоорганизация – лейтмотив моей книги, так как она лежит в основе биологии развития. Понятия «адаптивная самоорганизация» и «эмерджентность» выходят за рамки биологии, и в разделе «Дополнительная литература» я привел несколько ссылок на увлекательные книги по этой теме.

Новые данные биологии развития ясно говорят о том, что организм возникает совсем не так, как строятся здания или машины. Смешно, но факт: способы образования нашего собственного тела абсолютно чужды нашим представлениям о том, как это могло бы быть. Поэтому, пытаясь понять, как эмбрион строит сам себя, очень полезно сравнить – и противопоставить – развитие этой биологической системы с привычными способами строительства объектов.

У всех инженерных проектов, будь то сборка локомотива или строительство здания, есть общие черты. Прежде всего у любого проекта есть определенный план – это может быть чертеж или какая-либо иная схема, – ясно показывающий, что же мы хотим получить в итоге. План показывает ожидаемый результат, но частью этого результата он не будет. У каждого проекта есть руководитель – главный инженер или архитектор, – который дает указания подчиненным, а те, в свою очередь, рабочим, которые и выполняют укладку кирпича, резку, сварку и покраску. Детали будущей конструкции не могут соединиться вместе сами по себе. Это делают рабочие – каменщики, сборщики, сварщики, – которые сами не являются частью этой конструкции. При этом рабочие и главный инженер владеют огромным объемом «внешней» информации – по технологии сварки или камнетесному делу, – которая не присутствует в объектах, которые они создают. И наконец, большинство рукотворных сооружений вводятся в эксплуатацию только после полного завершения работ.

В биологическом конструировании мы не найдем этих привычных этапов. Это лишний раз подчеркивает разницу между живыми существами и инженерными конструкциями. В отличие от технических проектов, биологическое конструирование не подразумевает никаких чертежей и эскизов конечного результата. Безусловно, в оплодотворенной яйцеклетке содержится информация (в генах, в молекулярных структурах, в пространственном распределении концентраций химических веществ), но связь между этой информацией и тем, как в конечном итоге будет выглядеть готовый организм, далеко не проста. Известно, что эта информация контролирует дальнейшую последовательность событий (а знаем мы это, потому что изменение этой информации, например при мутации гена или изменении концентрации определенного вещества в определенном месте, меняет последовательность событий, и развитие идет по аномальному пути).

В технике, и особенно в математике, к конечному результату можно прийти при помощи пошаговых инструкций. Рассмотрим пример: посередине пшеничного поля воткните в землю кол и привяжите к нему веревку. Возьмите другой ее конец и пройдите несколько метров, чтобы веревка натянулась. Затем идите направо, сохраняя натяжение. Таким образом можно начертить простейшую окружность. Некоторые структуры гораздо легче создать по инструкциям, чем по чертежам. Если у вас есть под рукой карандаш и бумага, попробуйте по приведенным ниже инструкциям начертить геометрическую фигуру под названием «салфетка Серпинского».

1. Начертите равносторонний треугольник с горизонтальным основанием. Чем больше он будет, тем лучше. Будем считать его «исходным треугольником».

2. Внутри данного треугольника проведите три отрезка. Каждый из них должен проходить из середины каждой стороны в середину смежной. Эти отрезки образуют перевернутый треугольник, занимающий четверть площади исходного.

3. Заштрихуйте полученный треугольник.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×