сетчатке. И сопоставимая сложность повторена триллионы раз в других местах всего тела. 125 миллионов светочувствительных клеток примерно в 5000 раз превышают количество раздельно различимых точек на журнальной фотографии хорошего качества. Сложенные мембраны в правой части показанной палочки — это собственно собирающие свет структуры. Их слоистое строение увеличивает эффективность поглощения фотонов, элементарных частиц — переносчиков света. Если фотон не пойман первой мембраной, он может быть пойман второй, и так далее. Поэтому некоторые глаза способны обнаружить единственный фотон. Самые светочувствительные эмульсии фотоплёнок, доступные фотографам, требуют примерно в 25 раз больше фотонов, чтобы детектировать световую точку. Объекты, похожие на таблетки в средней части клетки, это, главным образом митохондрии. Митохондрии есть не только в светочувствительных клетках, но и в большинстве других клеток тела. Каждую митохондрию можно сравнить с химической фабрикой, которая, вырабатывая энергию, годную для потребления другими структурами, перерабатывает более 700 различных химических субстанций на своих длинных, переплетённых «сборочных конвейерах», натянутых на поверхности её запутанно свёрнутых внутренних мембран. Круглый шарик в левой части рисунка 1 — ядро. Наличие клеточного ядра тоже характерно из всех животных и растительных клеток. Как мы увидим в главе 5, каждое ядро содержит большую, дискретно закодированную базу данных, объём информации в которой превышает таковой во всех 30 томах «Британской энциклопедии» вместе взятых. И это — для каждой клетки, а не всех клеток тела, вместе взятых!

Клетка-палочка в нижней части рисунка — это одна единственная клетка. Общее количество клеток в теле (человека) — примерно 10 триллионов. И когда вы кушаете бифштекс, вы разрушаете информацию, эквивалентную по объёму более чем 100 миллиардам копий «Британской энциклопедии».

Глава 2. Удачный проект

Естественный отбор — это слепой часовщик. Он слеп, ибо не смотрит вперёд, не планирует результатов и не имеет никакой цели. Тем не менее, живые результаты естественного отбора несказанно впечатляют нас ощущением задуманности как бы высококвалифицированным часовщиком, впечатляют иллюзией запроектированности и запланированности.

Цель этой книги — разрешить этот парадокс к удовлетворению читателя, а цель этой главы — ещё более впечатлить читателя силой этой иллюзии задуманности. Мы рассмотрим конкретный пример и сделаем вывод, что Пали лишь прикоснулся к этой теме, настолько велика его сложность и красота замысла.

Мы можем говорить, что живое тело или орган хорошо разработаны, если они обладают особенностями, которые умный и опытный инженер мог встроить в них для достижения определённой разумной цели — такой, как полёт, плавание, видение, питание, размножение — или, говоря шире, для поддержки своего выживания и репликации генов организма. Нет необходимости предполагать, что замысел данного тела или органа — это лучшее из того, до чего инженер мог бы додуматься. Часто бывает, что лучшее достижение одного инженера, может быть в общем случае превзойдено лучшим достижением другого инженера, особенно если второй живёт позже в технологической истории. Но любой инженер может понять цель разработки объекта, даже если он разработан плохо, и обычно он может понять эту цель, изучая его структуру. В первой главе мы интересовались главным образом философскими аспектами. В этой главе я буду рассматривать конкретный пример, который, полагаю, произвёл бы впечатление на любого инженера — а именно сонар («радар») летучих мышей. Объясняя каждый пункт, я буду начинать с изложения проблемы, стоящей перед живой машиной; затем я буду рассматривать возможные решения этой проблемы, которые мог бы рассмотреть разумный инженер; и наконец — к решению, фактически принятому природой. Разумеется, наш пример для ллюстрации выбран почти произвольно. Если инженера увлечёт функционирование летучих мышей, его столь же увлекут другие бесчисленные примеры живых проектов.

Перед летучими мышами стоит проблема: как находить путь в темноте? Они охотятся ночью и не могут использовать свет для поисков добычи и избегания препятствий. Вы могли бы здесь заметить, что если это проблема, то это проблема их привычек, и этой проблемы они могли бы избежать, просто изменив эти привычки и перейдя к охоте днём. Но дневная экономическая ниша уже плотно занята другими существами, такими, как птицы. Учитывая, что ночью есть возможность изыскать средства к существованию, а также учитывая, что альтернативные дневные экономические ниши полностью заняты, естественный отбор одобрил летучих мышей, которые практикуют экономику ночной охоты. Кстати, вероятно, что ночной образ жизни вели предки всех ныне существующих млекопитающих. В эпоху, когда динозавры доминировали в дневной экономике, наши млекопитающие предки, возможно, именно потому сумели вообще выжить, что нашли способы бороться за существование[2] ночью. И только после таинственного массового исчезновения динозавров примерно 65 миллионов лет назад, наши предки получили возможность выйти на дневной свет в каких-то существенных количествах.

Итак, у летучих мышей есть техническая проблема: как находить путь и искать добычу при отсутствии света. Летучие мыши — не единственные существа, стоящие перед этой трудностью сегодня. Очевидно, что летающие ночью насекомые, на которых летучие мыши охотятся, также должны как-то находить свой путь. Глубоководных рыб и китов тоже окружает полная или почти полная темнота — и днём, и ночью, потому что лучи солнца не могут проникать глубоко в воду. Рыбы и дельфины, которые живут в чрезвычайно мутной воде, также не могут видеть — несмотря на наличие света, так как свет рассеивается загрязнениями. Многие другие современные животные живут в условиях, в которых использование зрения затруднено или невозможно.

Какие решения мог бы рассмотреть инженер, поставленный перед проблемой маневрирования в темноте? Первое, что могло бы придти к нему в голову, так это идея выработки света — какого-нибудь фонаря или прожектора. Светлячки и некоторые рыбы (обычно с помощью бактерий) имеют возможность излучать собственный свет, но этот процесс, похоже, потребляет много энергии. Светлячки используют свой свет для привлечения самок. Для этого не требуется непомерно большой энергии: самка может заметить тёмной ночью крошечную светящуюся точка самца с довольно большого расстояния, поскольку на её глаза действует прямой свет самого источника. Использование света для освещения своего пути требует значительно большей энергии, так как глаза должны при этом уловить крошечную долю излучённого света, рассеянного предметами окружающей сцены. Поэтому, если мы хотим использовать свет для освещения пути, то источник этого света должен быть намного ярче, чем сигнальный источник для информирования кого-то другого. Ну так или иначе, действительно ли причина в расходе энергии или нет, но похоже, что это факт — за возможным исключением одной таинственной глубоководной рыбы, никакое другое животное, кроме человека, не использует продуцированный свет для освещения пути своего передвижения. О чём ещё инженер мог бы подумать? Вроде бы слепые люди иногда демонстрируют сверхъествественное чутьё препятствий на их пути. Этому явлению дали название «лицевого зрения», потому что слепые сообщали об ощущениях, подобных лёгкому прикосновению к лицу. Одно сообщение описывает полностью слепого мальчика, который мог ездить на хорошей скорости на своём трёхколесном велосипеде вокруг квартала близ своего дома, пользуясь «лицевым зрением». Эксперименты показали, что на деле «лицевое зрение» не имеет ничего общего с прикосновениями к лицу, хотя ощущения при этом могут быть описаны именно так, и, видимо, подобны фантомной боли ампутированной конечности. Оказалось, что ощущение «лицевого зрения», на деле приходит через уши. Слепые люди, даже не осознавая этого факта, на деле используют эхо звука своих собственных шагов и других звуков, ощущая наличие препятствий. Инженеры построили приборы, использующие этот принцип, например — для замера глубины моря под судном, ещё до обнаружения этого факта. Как только эта техника была изобретена, то адаптация ее разработчиками оружия для обнаружения субмарин была лишь вопросом времени. Обе стороны во второй мировой войне активно использовали эти устройства под наименованиями «Асдик» (в Британии) и «сонар» (в США). Подобная технология была использована в «радарах» (в США) или «RDF» (в Британии), где использовалось эхо не звуковой, а радиоволны. Разработчики первых сонаров и радаров ещё не знали про летучих мышей, но сейчас весь мир знает, что летучие мыши или, скорее, естественный отбор, работавший на летучих мышах, усовершенствовал эту систему на десятки миллионов лет раньше, и их «радары» творят такие подвиги

Вы читаете Слепой часовщик
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×