развития и расцвета земной жизни изменяется, возрастает космическая роль растения, гениально понятая К. А. Тимирязевым.

Каков же этот великий и таинственный процесс, в ходе которого стремительный и неуловимый солнечный луч превращается в узника, и, гремя оковами — цепями углеродных атомов, приводит в движение гигантский маховик биосферы?

В самом общем виде фотосинтез, т. е. синтез при участии света, состоит в образовании из углекислоты воздуха и почвенной влаги сложных органических соединений углерода, кислорода и водорода. Благодаря использованию минеральных солей почвы в их состав включается также азот, фосфор, сера, железо, калий, натрий и другие элементы. В итоге возникают огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, служащие, в свою очередь, строительным материалом клеток, кирпичиками здания жизни.

Со времен К. А. Тимирязева (70—80-е годы прошлого столетия) и почти до середины XX в. ученые были убеждены, что солнечная энергия, уловленная хлорофиллом, расходуется на расщепление молекул углекислоты: кислород выделяется в атмосферу, а углерод идет на синтез органических веществ. Суммарная формула процесса изображалась таким образом:

6С02 + 6Н20 -> С6Н1206 + 602.

Формулу С6Н1208 имеют такие продукты фотосинтеза, как глюкоза, фруктоза и другие простейшие сахара. В них водород и кислород содержатся в том же соотношении 2 : 1, как в воде, поэтому эти вещества называют еще углеводами. Простейшие углеводы — моносахариды, теряя воду, могут образовывать более сложные соединения — дисахариды — сахарозу (тростниковый сахар), лактозу (молочный сахар), полисахариды — крахмал, целлюлозу и т. п. Применение метода меченых атомов внесло в эту схему существенную поправку. Оказалось, что сила, заключенная в солнечном луче, расходуется на разложение воды, а не двуокиси углерода, и что кислород атмосферы имеет, следовательно, не углекислотное, а водное происхождение. В уточненном виде основное уравнение фотосинтеза имеет следующий вид:

С02 + 2Н20 + свет -> 02 + Н20 + (СН20) + 112 ккал.

Иными словами, в органических соединениях, синтезированных из одной грамм-молекулы углекислоты, запасается 112 ккал энергии.

Фотосинтез — сложный, многоступенчатый процесс, детали которого не полностью расшифрованы поныне. Состоит он из большого количества последовательных этапов, реакций. Реакции эти можно подразделить на два типа: одни осуществляются под непосредственным влиянием поглощенного света, другие — в темноте. Непременным участником световых, фотохимических реакций являются вещества, избирательно поглощающие излучение определенной длины волны. Если фотохимическая реакция активируется видимым светом, для ее осуществления нужно красящее вещество, пигмент. В реакциях фотосинтеза эту роль выполняет хлорофилл. Важная способность фотохимических реакций: их скорость практически не зависит от температуры среды, в которой они протекают. И это естественно: поглотив порцию солнечных лучей, хлорофилл не нуждается больше в притоке энергии, чтобы начать процесс фотосинтеза.

Реакции фотосинтеза, протекающие в темноте, называют темповыми, химическими (без приставки «фото»). Эти реакции регулируются и управляются белковыми катализаторами — ферментами. Каждая последующая реакция фотосинтеза для своего осуществления нуждается в присутствии специального фермента. Скорость темновых, как и всех вообще химических реакций, зависит от температуры и при ее повышении на 10° С возрастает в два-три раза.

Процесс фотосинтеза начинается с поглощения света хлорофиллом. Это замечательное вещество, к свойствам которого мы будем еще неоднократно возвращаться. По своему составу хлорофилл очень близок к тему — красящему веществу гемоглобина крови и переносчику кислорода. Структурной основой обоих служат порфирины — вещества, которые, как говорилось в предыдущем разделе, могут при определенных условиях образовываться абиогенно. Следовательно, фотосинтез на древней Земле мог явиться закономерным итогом естественного хода событий и, в свою очередь, открыл новую главу в эволюции земной жизни.

Активный центр хлорофилла (и тема) состоит из порфириновых группировок. Но если у гемоглобина в центре активной группы расположен атом железа, то в хлорофилле эту роль выполняет атом магния. Молекула хлорофилла в целом выполняет две функции: поглощает порцию солнечной энергии и затем передает ее строго по назначению. Функцию улавливания энергии света выполняют порфириновые кольца, тогда как атом магния выступает в качестве посредника и катализатора в фотохимической реакции разложения воды на атомы водорода и кислорода. Кислород уходит в атмосферу, а атомы водорода, снабженные при освобождении запасом энергии, постепенно расходуют ее, проходя лестницу темповых реакций.

В растениях имеется несколько видов хлорофилла, из которых главные два — хлорофилл а и хлорофилл б. Поглощают хлорофиллы не все видимые глазом лучи Солнца, а главным образом красные и синие лучи. Максимумы поглощения света для хлорофилла а лежат в области 400—440 и 630—600 нм (1 нм = 10-9 м), для хлорофилла б — в области 440—470 и 620—650 нм. Хлорофилл плохо поглощает зеленые лучи, но зато он хорошо их отражает и рассеивает, поэтому те части растений, которые содержат хлорофилл, имеют зеленую окраску. В зеленых частях растения содержатся и желтые пигменты — каротиноиды, которые хорошо поглощают синие лучи. Есть основания полагать, что каротиноиды передают поглощенную энергию хлорофиллу либо наряду с ним участвуют в фотохимических реакциях процесса фотосинтеза (рис. 2).

Все химические реакции, совершающиеся самопроизвольно, идут с потерей энергии. Чем больше величина отданной энергии, тем прочнее, устойчивее образовавшееся вещество. В процессе фотосинтеза совершается последовательный ряд реакций, общее направление которых противоположно естественному сродству атомов. При помощи энергии солнечного света растение преодолевает силы связи между водородом и кислородом в молекулах воды, между кислородом и углеродом в углекислоте. Образующиеся при этом активные продукты (атомы кислорода, водорода, гидроксильные ионы и др.) стремятся, отдав избыточную энергию, вновь соединиться. Если бы реакции фотосинтеза происходили в растворе или в другой простой среде, обратные реакции сводили бы на нет результаты основного процесса. В зеленом растении этого не происходит, так как образующиеся активные продукты с момента своего возникновения пространственно разделены. Каждый из них проходит свою цепочку превращений.

Рис. 2. Спектры поглощения каротиноидов (1) и хлорофиллов (2)

Водород и углерод как бы движутся навстречу друг другу по ступенькам темновых реакций.

Для пространственного разделения основных активных продуктов и путей их обмена зеленое растение в ходе эволюции выработало сложный аппарат — систему мембран, своего рода органы фотосинтеза. Пигменты, участвующие в фотосинтезе, сосредоточены внутри клеток в хлоропластах, имеющих правильную пластинчатую структуру. Под микроскопом хорошо видно, что и в пластинках есть правильно чередующиеся структурные элементы — диски. Диски состоят из чередующихся слоев белковых и жироподобных (липоидных) веществ (рис. 3). Молекулы хлорофилла, связанные с веществами белково- липоидного комплекса, образуют с ними единую мембранную структуру.

На первой, фотохимической, стадии процесса происходит захват, поглощение энергии света (рис. 4).

Рис. 3. Схема строения граны хлоропласта. Между монослоями белка (1) лежат отдельные молекулы хлорофилла (2) и слои фосфолипидов (3)

Каждая молекула хлорофилла а поглощает по одному кванту света. Поглощенная энергия кванта

Вы читаете Солнечный луч
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×