можем записать разложение числа d на простые множители в виде

d = p1δ1p2δ2 • …. • рrαr, (3.2.2)

Простое число p1 может содержаться не более α1 раз, как и в самом числе n; аналогично — для p2 и других простых чисел. Это значение для числа δ1 мы можем выбрать α1 + 1 способом:

δ1 = 0, 1…, α1;

аналогично и для других простых чисел. Так как каждое из α1 + 1 значений, которые может принимать число δ1, может сочетаться с любым из α2 + 1 возможных значений числа δ2 и т. д., то мы видим, что общее число делителей числа n задается формулой

τ(n) = (α1 + 1) (α2 + 1)… (αr + 1). (3.2.3)

Система задач 3.2.

1. Сколько делителей имеет простое число? Сколько делителей имеет степень простого числа рα?

2. Найдите количество делителей у следующих чисел: 60, 366, 1970, вашего почтового индекса.

3. Какое натуральное число (или числа), не превосходящее 100, имеет наибольшее количество делителей

§ 3. Несколько задач о делителях

Существует единственное число n = 1, которое имеет только один делитель. Числами с ровно двумя делителями являются простые числа n = р: они делятся на 1 и на р. Наименьшим числом, имеющим два делителя, является, таким образом, р = 2.

Исследуем числа, имеющие ровно 3 делителя. В соответствии с (3.2.3) имеем

3 = (α1 + 1) (α2 + 1)… (αr + 1).

Так как 3 — простое число, то справа может существовать лишь один множитель, не равный 1. Отсюда r = 1, a α1 = 2. Таким образом,

n = p12.

Наименьшим числом с 3 делителями является n = 22 = 4. Это соображение, примененное к общему случаю, когда число делителей q является простым числом, позволяет получить, что

q = α1 + 1, т. е. α1 = q — 1 и n = р1q-1;

наименьшим из таких чисел является

n = 2q-1.

Рассмотрим следующий случай, когда существует ровно 4 делителя. Тогда соотношение

4 = (α1 + 1) (α2 + 1),

возможно только тогда, когда

α1 = 3, α2 = 0 или α1 = α2 = 1.

Это приводит к двум возможностям:

n = p13, n = p1  p2;

наименьшее число с 4 делителями — это n = 6.

В том случае, когда имеется 6 делителей, должно выполняться соотношение

6 = (α1 + 1) (α2 + 1),

что возможно лишь тогда, когда

α1 = 5, α2 = 0 или α1 = 2, α2 = 1.

Это дает две возможности:

n = p15, n = p12 p2;

при этом наименьшее значение имеет место в последнем случае, когда

p1 = 2, p2 = 3, n =12.

Этот метод можно использовать для вычисления наименьших натуральных чисел, имеющих любое заданное количество делителей.

Существуют таблицы, указывающие количество делителей для различных чисел. Они начинаются следующим образом:

Вы легко можете ее самостоятельно продолжить.

Будем говорить, что натуральное число n является сверхсоставным, если количество делителей у каждого числа, меньшего n, меньше, чем количество делителей у числа n. Глядя на нашу небольшую таблицу, мы видим, что

1, 2, 4, 6, 12

являются первыми пятью сверхсоставными числами. О свойствах этих чисел известно еще очень мало.

Система задач 3.3.

1. Взвод из 12 солдат может маршировать 6-ю различными способами: 12 × 1, 6 × 2, 4 × 3, 3 × 4, 2 × 6, 1 × 12. Какую наименьшую численность должны иметь группы людей, которые могут маршировать 8, 10, 12 и 72 способами?

2. Найдите наименьшие натуральные числа, имеющие: а) 14 делителей, б) 18 делителей ив) 100 делителей.

3. Найдите два первых сверхсоставных числа, следующих за числом 12.

4. Охарактеризуйте все натуральные числа, количество делителей которых

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×