случайный процесс? Может быть, есть какой-нибудь скрытый фактор, который определяет, пройдет ли фотон или нет, а мы его просто не знаем?
К этому вопросу — вопросу о наличии так называемых скрытых параметров — мы вернемся позже, а пока попытаемся узнать, что происходит при одновременном наблюдении пары фотонов.
Обычный источник света испускает фотоны со случайной поляризацией, и при наблюдении за любой парой таких фотонов мы увидим, что они будут вести себя совершенно независимо друг от друга. Однако в физике известны процессы, к примеру, последовательное испускание фотонов некоторыми атомами, находящимися в возбужденном состоянии, когда получаются два фотона с одинаковой поляризацией. Одно состояние — продольная поляризация обоих фотонов, другое возможное состояние — их поперечная поляризация.
Поместим источник пар фотонов (в реальных экспериментах в качестве источника использовались атомы кальция и ртути) между двух поляризационных анализаторов (рис. 6), оптические оси которых параллельны, и понаблюдаем за прохождением каждого фотона из пары.
, (3)
Первое, что нам необходимо проверить, это действительно ли поляризация каждого из фотонов пары случайна. Проделав соответствующие опыты, мы убеждаемся, что да: сквозь анализатор как справа, так и слева от источника проходит, в пределах статистической погрешности, ровно половина фотонов. Точно такой же результат мы бы имели при использовании любого обычного источника света.
Далее следует проверить, что происходит, например, со вторым фотоном, когда первый поглощается. Согласно классическим представлениям, связь между ними должна быть, но только статистическая. Расчёты в теории вероятностей показывают, что при поглощении первого фотона поляризующей пленкой, второй с вероятностью 75 % поглощается[24], однако может с вероятностью 25 % пройти сквозь пленку. В этих расчетах мы исходили из совершенно разумных, на первый взгляд, предположений о том, что оба фотона имеют определенную и совпадающую между собой поляризацию с момента своего рождения.
Эксперимент же показывает, что если проходит один фотон, то всегда проходит и другой. А если поглощается один, то всегда поглощается и другой. То есть один из фотонов пары непостижимым образом знает, что происходит со вторым фотоном!
Это происходит вне зависимости от расстояния между источником пар фотонов и анализаторами. Один из анализаторов, к примеру, может стоять рядом с источником, а второй — быть удален сколь угодно далеко. Полученный результат не зависит и от ориентации оптических осей анализаторов относительно горизонта: важно только, чтобы они совпадали.
Возникает вопрос, можно ли использовать квантовые корреляции для «мгновенной» передачи классической информации из одной точки в другую? Ответ отрицателен, поскольку определяемые состояния частиц на каждом из анализаторов случайны, и их последовательность не несет никакой информации.
Квантовая теория объясняет результат эксперимента поразительно просто и красиво: до измерения поляризации фотона, то есть до прохождения фотоном анализатора, состояния поляризации существуют в состоянии суперпозиции, их просто не существует как локальных характеристик частицы. А в ходе измерения анализатор выделяет из суперпозиции, определяемой выражением (3) либо компоненту |00>, либо компоненту |11>. И в том, и в другом случае оба фотона имеют одинаковую поляризацию, определяемую относительно оптической оси анализатора, поглотившего первый из фотонов! Соответственно, либо они оба будут поглощены, либо они оба пройдут сквозь пленки. Последнее утверждение справедливо, однако, лишь в том случае, когда оптические оси обоих анализаторов совпадают.
Эта ситуация немного напоминает случай, когда у нас имелись два шара, черный и белый, которые потерялись. Найдя белый шар, мы можем утверждать, что оставшийся — черный. Однако объяснить поведение квантовых частиц в предположении, что каждый шар изначально белый или черный, не удастся. Шары, пока мы их не нашли, будут находиться в состоянии суперпозиции белого и черного и вести себя как бесцветные. И только тогда, когда мы определили цвет одного из шаров как черный, другой немедленно перестает быть бесцветным и приобретает белый цвет, на каком бы расстоянии он ни находился! А пока мы не увидели один из шаров, проведя тем самым измерение, шары не имеют цвета в качестве своей индивидуальной локальной характеристики.
На первый взгляд, результаты эксперимента говорят, что квантовый объект каким-то непостижимым образом «узнаёт», что происходит с другим объектом, удаленным от него на значительное расстояние (сейчас проведены эксперименты с расстоянием между парами фотонов более 100 км). Это не совсем так: ничего никому не нужно узнавать, поскольку пара фотонов остается единым объектом по поляризационным (= спиновым[25]) степеням свободы, несмотря на то, что «носители» поляризации пространственно разделены. Сложная система может быть локальна (то есть сепарабельна, разделима на независимые части) по одним степеням свободы и нелокальна (несепарабельна, неразделима на части) — по другим.
Таким образом, в общем случае поляризационные свойства группы фотонов нельзя разделить и приписать каждому фотону свою, присущую ему и только ему поляризацию. Поляризация оказывается системным свойством, а не свойством отдельной частицы! То же самое можно сказать и о любых других характеристиках любой другой частицы или более сложного объекта.
Подобную связь между частицами называют квантовыми корреляциями, а состояния участвующих в них частиц — запутанными.
Запутанное состояние — состояние составной системы, которая не может быть разделена на отдельные, полностью самостоятельные и независимые части, то есть это несепарабельное (неразделимое) состояние.