уравнения Ньютона и т.д. Это просто математический аппарат' (он, добавим мы, строго логичен, безупречен и достоверен). Но необходимую часть теории составляет также его 'связь с физическими объектами'. Без установления связи математической конструкции с физическим миром вещей, - говорит Мандельштам - 'теория иллюзорна, пуста'. С другой стороны, без математического аппарата 'вообще нет теории'. 'Только совокупность. двух указанных сторон дает физическую теорию' [9, с.349].

'Евклидова геометрия, - говорит Эйнштейн, - если ее рассматривать как математическую систему, является лишь игрой пустых понятий (прямые, плоскости, отрезки и т.д. - все это лишь 'химеры'). Если же к этому добавить, что прямая заменяется твердым стержнем, то геометрия превращается в физическую теорию, и ее теоремы, например теорема Пифагора, наполняется реальным содержанием... Геометрия может быть истинной или ложной в зависимости от того, насколько верно она отражает проверяемые соотношения между данными нашего опыта' [10].

Конечно, исторически судьба физических теорий иногда складывалась так, что математическая конструкция, созданная в недрах математики без какого-либо обращения к нуждам физики, имевшая характер именно такой 'умственной игры', лишь через много десятилетий связывалась с физическими объектами и оказывалась практически очень важной. Так было, например, с теорией матриц, через много лет после ее создания оказавшейся адекватным аппаратом для описания свойств квантово-механической системы. Однако подобное несовпадение исторического и логического хода вещей ничего не меняет. Другой пример - неевклидова геометрия (см. ниже).

Более того, вера в то, что логически возможное обязательно связано с реальным миром, по существу, свойственна большинству физиков и математиков. Современный физик-теоретик П. Дирак обнаружил, что квантовая механика непротиворечиво допускает существование изолированных магнитных полюсов (в классической физике считалось, что физическое тело может обладать только совокупностью двух полюсов - северного и южного). Изложив впервые свои соображения в научной статье, Дирак закончил фразой: 'Трудно допустить, чтобы природа не использовала этой возможности'. И вот уже более сорока лет физики ищут в природе такой 'магнитный монополь Дирака' и не находят его. Не могут они найти и причину, по которой его существование было бы 'запрещено' (т.е. противоречило бы общим теоретическим принципам), и нет у них полного успокоения. Более того, именно в наши дни мы присутствуем при попытках создания всеобъемлющих теорий материи ('единых теорий поля' электромагнитных, сильных,. слабых и гравитационных взаимодействий), которые естественно включают представление о подобном монополе. Они не завершены, и пока ни одна из них не может претендовать на удовлетворяющее нас описание физической реальности. Однако тот факт, что монополь Дирака вновь вошел в 'большую игру', очень многозначителен.

Но и в этом случае речь идет о теориях, в которых исходные положения для последующего строго логического (математического) развития (в их числе и сами законы логики) приняты как безусловно верные. Что, однако, дает нам уверенность в правильности исходных положений, в их соответствии свойствам познаваемого мира? Как научно установить, верны они или не верны? Можно ли это сделать с помощью чисто логических операций, доказав правильность исходных положений 'научно'?

С детских лет мы чувствуем, что евклидова геометрия верна, например, что верна одна из ее исходных аксиом: через точку, лежащую вне данной прямой, можно провести прямую, параллельную данной, и притом только одну. Но Лобачевский попробовал отказаться от этой аксиомы и предположил, что через такую точку можно провести не одну - единственную, а сколько угодно прямых, не пересекающихся с данной. В результате он получил хотя и противоречащую нашим наглядным представлениям, но последовательную стройную систему, в которой выводы отличны от выводов евклидовой геометрии. Впоследствии были построены и другие неевклидовы геометрии. Вопрос о том, насколько неевклидовы геометрии соответствуют реальности, оставался открытым, пока через сто лет не была создана общая теория относительности Эйнштейна. Оказалось, что физическое тяготение, то самое, которое открыл еще Ньютон, можно представить не как действие некоторой таинственной силы, а как результат того, что пространственные соотношения в мире описываются геометрией, отличной от евклидовой, которую все учат в школе и которая верна, пока массы тел и расстояния сравнительно невелики.

Иными словами, изучая, например, строение Вселенной, в некотором смысле можно забыть о том, что существует тяготение, но зато принять, что верна не геометрия Евклида, а другая, особая геометрия. Справедливость такой неевклидовой геометрии для физического мира устанавливается не логически, а изучением и обобщением опытных фактов: обнаружением на опыте явления тяготения, описываемого законами точно определенного математического вида, подтверждением предсказаний эйнштейновской общей теории относительности.

Таким образом, истинность или ложность положений, исходных для логического построения, может быть установлена лишь способами, отличными от методов формальной логики, например сравнением с опытом. Но здесь мы сталкиваемся с тяжелой проблемой: опыт всегда ограничен. Откуда мы знаем, что на основе ограниченного опыта мы придем к неограниченно верному выводу?

Ньютон, говорит легенда, открыл закон тяготения, наблюдая падение яблока. Предположим, он наблюдал и изучал количественно это падение, чтобы прийти к достоверному заключению, даже не один, а тысячу, миллион раз, а затем на основе этих наблюдений сформулировал закон тяготения. Откуда можно черпать уверенность, что в миллион первый раз яблоко упадет в согласии с этим же законом? Неоткуда взяться такой уверенности, кроме как из нашей способности оценивать доказательность опыта, из нашей способности к суждению. В самом деле, ведь возможно бесконечное разнообразие случайностей. Могло быть, что во всем том миллионе падений, которые по нашему предположению наблюдал воображаемый, дотошный Ньютон, траектория и скорость яблока испытывали искажающее действие не учтенной Ньютоном причины - прохождения кометы, ветра, который в момент миллион первого опыта уже не дул, неравномерности вращения Земли и т.д.

Для того чтобы решиться сформулировать свой закон, Ньютон должен был предположить, что как эти причины, отсутствие которых можно было бы установить дополнительными (тоже неизбежно ограниченными!) опытами, так и множество неизвестных, но в принципе возможных других причин - неважны. Он должен был осуществить акт высочайшего интеллектуального значения и напряжения - высказать обобщающее суждение. Именно, - высказать логически недоказуемое утверждение, что установленный им закон имеет всеобщую значимость. Уверенность же в справедливости этого суждения впоследствии укреплялась всей практикой его применения, проверкой его предсказаний, плодотворностью его использования в материальной деятельности человечества. Уверенность в справедливости укреплялась, но безусловного логического доказательства это суждение не получало, что, как мы увидим ниже, было положительным фактом.

Уже сам Ньютон не ограничился рассмотрением явлений земного, 'человеческого' масштаба и применил найденные им законы движения и закон тяготения к планетам и Луне. Это было очень смелым шагом. Ведь радиусы планетных орбит вокруг Солнца в десять миллиардов раз больше пути падения яблока с дерева. Объединение явлений столь различного масштаба в рамках единой закономерности, установленной на основе опытов в масштабе дерева, отнюдь не всегда возможно. Например, как выяснилось в XX веке, если по шкале масштабов пойти в обратную сторону и перейти к внутриатомным явлениям, где расстояния в десять миллиардов раз меньше, то необходимо отказаться от классической ньютоновской механики, справедливой и для падения яблока, и для движения планет, нужно перейти к более общей, принципиально иной - квантовой механике.

Однако применение законов Ньютона к небесным телам сразу увенчалось огромным успехом. Логически бездоказательное предположение Ньютона о том, что различие масштабов движения яблока и небесных телнесущественно, получило опытное подтверждение и в данном случае оказалось правильным.

Этот триумф науки был в известном смысле ее несчастьем. Благодаря ему у последующих поколений ученых на двести лет закрепилась вера во всеобщую правильность законов Ньютона. Поэтому когда в XX веке выяснилось, что внутри атома, а также при скоростях, близких к скорости света (т.е. при скоростях, превышающих скорость падения яблока в сто миллионов раз, а скорости планет в десятки тысяч раз), законы Ньютона непригодны, возникла необычайная растерянность в ученом мире, крах некоторых концепций и скептицизм по отношению к ценности науки вообще.

Между тем по существу лишь оказалось, что законы движения имеют более сложный, чем у Ньютона

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×