наблюдать. Только в том случае, если он будет помещен на искусственном спутнике Земли, достаточно удаленном от ее поверхности, он может быть обнаружен с Марса или Венеры. Разумеется, при этом необходимо, чтобы луч прожектора был направлен с большой точностью на эти планеты.

Что же касается межзвездных расстояний, то и без всяких вычислений видно, что попытка обнаружить прожектор была бы совершенно безнадежной. Кроме того, в этом случае мы столкнулись бы с новой трудностью решающего характера: излучение Солнца в направлении оси прожектора на много порядков больше излучения самого прожектора. Таким образом, даже самые лучшие из современных прожекторов совершенно не в состоянии послать обнаружимый сигнал на межзвездные расстояния.

Положение, однако, коренным образом изменилось в последние годы в связи с усиленной разработкой квантовых усилителей и генераторов излучения. В радиодиапазоне это привело к изготовлению приемников сверхвысокой чувствительности, так называемых мазеров, о чем речь шла в предыдущей главе. Те же принципы, будучи примененными к оптическому и инфракрасному диапазону частот, привели к осуществлению исключительно важных и особенно перспективных приборов, получивших название «лазеров». Здесь нас не интересуют возможности использования лазеров как весьма эффективных усилителей света. Для нашей проблемы особый интерес представляют лазеры – генераторы пучков видимого и инфракрасного излучения.

Нас бы очень далеко завело обсуждение физических принципов работы лазеров. Желающих ознакомиться с этим вопросом мы отсылаем к книге Б. Лендьела «Лазеры». – М.: Мир, 1964. Мы здесь интересуемся лазерами с «потребительской» точки зрения, что для наших целей совершенно достаточно.

Основой современных лазеров (так же, как и мазеров) является некоторое «рабочее вещество», которое может быть и твердым и газообразным. На заре развития лазерной техники в качестве такого вещества использовался преимущественно синтетический рубиновый кристалл. В последние годы «твердотельным» рабочим веществом лазеров является стекло, активированное неодимом. Такие лазеры работают на волне 1,06 мкм. Наряду с этим в последнее время большое распространение получили газовые лазеры, где рабочим веществом является углекислый газ СО2. Благодаря специфическим свойствам «рабочего вещества» при определенных условиях с его поверхности в направлении нормали выходит почти параллельный и в высокой степени монохроматический пучок излучения. Современные лазеры могут работать в двух разных режимах. В одном случае лазер может посылать очень короткие импульсы излучения, длительностью до 10–12 с. У современных «твердотельных» лазеров энергия, излученная в каждом из таких ультракоротких импульсов, может доходить до 10 Дж. Длительность импульсов может быть значительно больше, и тогда энергия, содержащаяся в импульсе, естественно, увеличивается. Например, в режиме «свободной генерации» длительность импульса порядка тысячной доли секунды, а энергия в каждом импульсе может доходить до нескольких тысяч джоулей.

Газовые лазеры, использующие СО2 в качестве «рабочего вещества», могут работать в режиме непрерывной генерации, излучая мощность в несколько десятков киловатт. Так как излучение лазера синфазно по всей его поверхности, то, как известно из оптики, угловая ширина посылаемого им пучка будет равна λ/D, где λ – длина волны света, D – размеры блока «рабочего вещества». Отсюда следует, что даже у современных лазеров размером всего лишь в 1 см угол раствора светового пучка равен приблизительно 5~10- 5 рад или 10 с дуги. Если таким пучком осветить Луну, размеры пятна будут около 20 км. Заметим, что угловые размеры пучка могут быть сделаны значительно меньше, если лазер сочетать с некоторой оптической системой типа телескопа.

Пусть мы имеем высококачественную линзу, диаметр которой равен d, причем фокусное расстояние также равно d.

Если такую линзу поместить в пучок света, излучаемый лазером, то в ее фокальной плоскости действительное изображение пучка будет иметь размеры λ. Пусть это изображение совпадает с фокусом другой линзы(или зеркала) значительно большего диаметра А, причем фокусное расстояние большой линзы больше или равно А.

В таком случае, как легко убедиться, пучок, выходящий из большого зеркала, будет иметь угол расхождения, равный λ/А. Хотя такие системы еще не изготовлены, в принципе это вполне возможно. Трудности здесь будут хотя и серьезные, но чисто технического характера. Например, необходимо будет разработать системы автоматического контроля и коррекции поверхности большого зеркала, компенсирующие деформации из-за нагревания его поверхности мощным пучком излучения.

Кроме исключительно высокой направленности, другим важным преимуществом пучка излучения, генерируемого лазером, является высокая монохроматичность. Так, например, у современных лазеров, работающих в непрерывном режиме, ширина полосы частот бывает до 10 кГц, что в десятки миллиардов раз меньше частоты излучения. Как мы увидим ниже, высокая степень монохроматичности пучка – весьма ценное качество для межзвездной связи.

В настоящее время усовершенствованию лазеров уделяется огромное внимание. Так, в США над этой проблемой работают тысячи фирм. Расходы на исследования в данной области достигают многих сотен миллионов долларов в год. Интерес к этой проблематике не случаен. Осуществление лазеров большой мощности будет означать появление нового типа оружия совершенно исключительной разрушающей способности. По существу, это будет знаменитый «тепловой луч» уэллсовских марсиан или, еще точнее, «гиперболоид инженера Гарина», созданный лет 60 назад фантазией Алексея Толстого. Лазеры большой мощности, вероятно, можно будет использовать как эффективное противоракетное оружие.

Нужно, однако, надеяться, что колоссальные потенциальные возможности лазеров будут использоваться только в мирных целях. Развитие этой новой техники может оказать решающее влияние на ряд областей деятельности человечества, в частности на космическую связь.

Первыми, кто обратил серьезное внимание на возможность применения лазеров для космической связи, были американские ученые Таунс (один из основоположников квантовой электроники, лауреат Нобелевской премии) и Шварц. Их работа появилась в одном из апрельских номеров журнала «Нейчур» за 1961 г.

В качестве основной аппаратуры они рассматривают две системы лазеров, которые пока еще не разработаны, но в принципе могут быть изготовлены в ближайшие годы.

Система «а» характеризуется мощностью 10 кВт в непрерывном режиме излучения, имеет длину волны света около 0,5 мкм, ширину полосы частот в пучке около 1 МГц, диаметр дополнительного большого зеркала 500 см и соответствующий этому зеркалу угол раствора пучка φ = 10–7 рад или 0,02″.

Система «б» представляет собой «батарею» из 25 таких же лазеров, как и в системе «а», но для каждого из них А = 10 см, и, следовательно, угол раствора пучка равен 1″. С такой точностью вся батарея лазеров может быть ориентирована в одном направлении.

Следует заметить, что если система «а» будет установлена на поверхности Земли, то из-за неспокойствия атмосферы угол раствора пучка будет значительно больше теоретически ожидаемого, достигая 1″ или даже больше. Поэтому такую систему целесообразно поместить на искусственном спутнике за пределами атмосферы. Что касается системы «б», то она может работать с поверхности планеты без существенных искажений.

Таунс и Шварц формулируют два естественных условия обнаружимости сигналов, посланных с других миров с помощью лазеров.

Первое условие: пучок должен быть достаточно интенсивным, чтобы быть обнаруженным с помощью подходящего телескопа.

Второе условие: необходимо, чтобы каким-либо способом можно было отделить сигнал от излучения звезды. В радиодиапазоне второе условие выполняется почти автоматически, но в оптическом отделение сигнала от излучения звезды, как мы увидим ниже, – довольно сложная проблема.

Предположим, что сигнал посылается системой «а», вынесенной за пределы атмосферы планеты. Пусть расстояние R от планеты до Земли 10 световых лет, или см. Тогда поток излучения у Земли будет F = W/R2Ω где W = 10 кВт – мощность

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×