передатчика, Ω = 10–14 – телесный угол пучка. Следовательно, F = 10–20 Вт/см2, в то время как поток от Солнца равен 0,14 Вт/см2. Зная отношение потоков излучения лазера и Солнца, легко можно вычислить звездную величину лазера, наблюдаемого с Земли. Для этого воспользуемся известной формулой астрономии, которая представляет собой определение понятия «звездная величина»:

Видимая звездная величина Солнца m2= –26,8, откуда звездная величина лазера m1 = +21,2. Это означает, что с расстояния 10 световых лет такой лазер будет наблюдаться как одна из самых слабых звезд, едва доступная для больших телескопов. Поэтому для обеспечения надежной связи мощность передатчика должна быть повышена в несколько десятков раз по сравнению с принятой Таунсом и Шварцем.

Что касается системы «б», то поток от нее получается в 100 раз меньшим, чем от системы «а». Поэтому, вопреки утверждению Таунса и Шварца, для межзвездной связи она непригодна.

Теперь мы обсудим вопрос о возможности отделения сигнала лазера от излучения звезды, около которой он находится. Единственный способ такого отделения состоит в использовании свойства высокой монохроматичности излучения лазеров.

Пусть эта звезда излучает вблизи волны 0,5 мкм так же, как и наше Солнце (заметим, что вблизи этой волны находится максимум в распределении солнечного излучения по спектру). Тогда интенсивность излучения, рассчитанная на единичный интервал частоты и единичный телесный угол, будет равна 4- 1010 Вт/(Гц-ср), в то время как у лазера интенсивность (равная потоку излучения, деленному на телесный угол пучка) будет

Мы учли то обстоятельство, что у лазера все излучение сосредоточено в очень узкой полосе частот в 1 МГц. Таким образом, «спектральная интенсивность» у такого лазера в 25 раз больше, чем у Солнца. Если бы этот лазер работал в ультрафиолетовой или инфракрасной областях спектра, его спектральная интенсивность еще больше превосходила бы солнечную. Дело в том, что в ультрафиолетовой и инфракрасной областях спектральная интенсивность Солнца значительно меньше, чем в зеленой области около длины волны 0,5 мкм. Так, спектральная интенсивность для волн, больших 1,5 мкм и меньших 0,25 мкм по крайней мере в 10 раз меньше, чем для 0,5 мкм, а для волн, больших 4 мкм или меньших 0,2 мкм – в сотни раз. Кроме того, нужно иметь в виду, что в солнечном спектре имеется много линий поглощения. В области этих линий (ширины которых значительно превосходят полосу частот лазера) спектральная интенсивность Солнца падает в десятки раз).

Перечисленные обстоятельства открывают возможности в сотни и даже тысячи раз увеличить «контрастность» спектральных интенсивностей лазера и Солнца. Если лазер вынесен за пределы земной атмосферы (которая полностью поглощает ультрафиолетовое излучение с длиной волны, меньшей 0,29 мкм, и существенную часть инфракрасного излучения), то в принципе, работая в области Х = 0,15 мкм «на дне» линии поглощения, можно получить для лазера спектральную интенсивность, в десятки тысяч раз большую, чем у Солнца. Следует, однако, иметь в виду, что при этом могут встретиться большие технические трудности как при изготовлении лазера в указанной спектральной области, так и вследствие резкого уменьшения отражательной способности зеркал в ультрафиолетовых лучах. Если лазер будет работать в инфракрасной области спектра, это повлечет за собой другую неприятность: пучок станет более расходящимся, так как длина волны будет больше. В общем создается впечатление, что выгоднее всего лазеру работать в видимом диапазоне частот «на дне» какой-нибудь сильной линии поглощения в спектре Солнца, например известных линий «Н» и «К», принадлежащих ионизованному кальцию. В этом случае спектральная интенсивность лазера в узкой полосе частот шириной в 1 МГц будет в 300 раз больше, чем у Солнца.

Если теперь наблюдать звезду с достаточно узкополосным светофильтром, излучение лазера может быть обнаружено на фоне излучения звезды. То же самое можно сформулировать иначе: если будет получен очень хороший спектр звезды, в нем может быть обнаружена весьма узкая линия излучения, принадлежащая лазеру. Однако практически трудно изготовить очень узкополосные хорошие фильтры. Точно так же разрешающая способность спектрографов ограничена.

Какая же должна быть у спектрографа разрешающая способность, чтобы в спектре звезды обнаружить линию излучения от лазера? Такая линия вполне может быть обнаружена, если ее интенсивность хотя бы на 10% превышает интенсивность непрерывного спектра. Существенно, однако, что интенсивность линий сильно «размазывается» разрешающей способностью спектрографа. Если, например, последняя составляет 1 А, или, в единицах частоты, 1011 Гц, то усредненная по этому интервалу частот интенсивность очень узкой линии лазера будет уже в 300 раз меньше интенсивности соседних участков спектра звезды. Отсюда следует, что для получения 10% контраста линии лазера над фоном разрешающая способность спектрографа должна быть 0,03 А. Это очень высокая разрешающая способность.

Но применение хороших спектрографов в сочетании с интерференционными приборами, по-видимому, позволило бы обнаружить в спектрах близких звезд слабую линию излучения искусственного происхождения. Такие наблюдения, конечно, следовало бы проводить на самых сильных телескопах. Если же мощность передатчика увеличить в несколько десятков раз (см. выше), то обнаружение такой линии не будет слишком трудной задачей даже для телескопов умеренных размеров в сочетании с хорошими спектрографами.

При таких наблюдениях может, однако, возникнуть еще одна трудность. Из-за непрерывного изменения скорости передатчика по лучу зрения, обусловленного эффектом Доплера, частота сигнала будет непрерывно меняться. Для обнаружения сигнала, очевидно, нужно, чтобы за время фотографирования спектра звезд (скажем, час) частота сигнала не вышла бы за пределы полосы частот, определяемой разрешающей способностью спектрографа. Быстрее всего доплеровское смещение сигнала меняется из-за суточного вращения планеты, так как в этом случае период колебаний лучевых скоростей сравнительно невелик. Все же простой расчет показывает, что за время порядка 1 часа полоса частот лазера не уйдет за пределы, определяемые разрешающей способностью спектрографа.

Таким образом, мы убедились, что лазеры при условии их дальнейшего усовершенствования вполне могут быть пригодны для межзвездной связи. При мощности лазера 10 кВт осуществление такой связи оказывается на пределе возможностей современной техники. Имеются, однако, серьезные основания полагать, что в перспективе ближайших нескольких десятилетий мощность лазеров вырастет в огромной степени. Например, применение лазеров для военных нужд может потребовать увеличения их мощности до миллионов киловатт и даже больше.

Как же можно распознать линию искусственного происхождения в спектре какой-нибудь звезды? Во- первых, эта линия излучения должна быть чрезвычайно узкой; во-вторых, ее, по-видимому, нельзя будет отождествить с какой-либо из известных спектральных линий, и, наконец, интенсивность этой линии может регулярно меняться во времени. В этом случае информация может передаваться так же, как при пользовании «световым телеграфом». Коль скоро будет обнаружено присутствие линии излучения искусственного происхождения в спектре звезды, дальнейшее ее изучение можно будет проводить детально посредством специально для этого разработанной аппаратуры. При этом широкое применение может получить фотоэлектрический метод наблюдения, который позволяет свести «время накопления» сигнала (аналогичное «времени экспозиции» при фотографических наблюдениях) до нескольких минут и даже меньше. Это весьма желательно для расшифровки модулированного светового сигнала.

Все наши расчеты условий обнаружений оптических сигналов, посланных с других планетных систем при помощи лазеров, предполагают, что инопланетная цивилизация посылает очень узкий пучок света на Землю. Точность посылки сигнала должна быть очень высокой. Угол 10–7 рад, или 0,02 с дуги (а это угловая ширина пучка), – величина очень маленькая. Именно с такой точностью должно выдерживаться направление посылки сигнала. Эта точность находится на пределе

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×