KC-135. But while highly capable, the -135 has one problem. It can either give away fuel, or deploy to an overseas theater, but not both at the same time. Given the need of airborne tanker aircraft to support intercontinental deployments by U.S. forces and still get there themselves, the USAF envisioned a new kind of refueler in the late 1970s. While based on a commercial airliner, the new tanker would be capable of carrying a much larger fuel load than the aging -135s. In addition, a heavy load of palletized cargo and personnel would be carried, to assist USAF units in deploying to bases overseas. Finally, it would be capable of itself being tanked in flight, as well as being able to refuel other aircraft from either the USAF “flying boom” system, or the more common U.S. Navy/NATO “drogue and probe.” The result was the McDonnell Douglas KC-10 Extender, of which sixty were bought in the 1980s. Today, the surviving fifty-nine KC-10s are the crown jewels of the Air Mobility Command’s tanker fleet. Closely held and lovingly maintained, they may be the key to successfully deploying our forces into remote overseas locations in the future. However you view the tanker force, though, it is important to remember that U.S. forces will go nowhere without a well-prepared and adequately equipped force of airlift/tanker aircraft and qualified crews.

A McDonnell Douglas KC-10A extender aerial tanker aircraft preparing to refuel another KC-10. These aircraft are the key to Intercontinental deployments by the U.S. Armed Forces. OFFICIAL U.S. AIR FORCE PHOTO VIA McDONNELL DOUGLAS AERONAUTICAL SYSTEMS

By this time you may well be asking about the worth of building a huge fleet of transport aircraft in an era of trillion-dollar federal deficits and our own pressing domestic needs. More than a few Americans wonder about the need for the United States to have forces capable of intervention overseas. While valid questions, they fail to take into account the reality of America’s place in the world. Whether we like it or not, the U.S. has responsibilities; airpower, including the AMC fleet of tanker and transport aircraft, frequently makes up our first response to the events in that world. Several years ago, when Colonel John Warden was interviewed for Fighter Wing, he said that “every bomb is a political bomb with political effects and consequences.” You could easily say the same thing about sorties by transport aircraft. While one mission may have you dropping paratroopers on a local warlord, another may see relief supplies being flown to refugees or disaster victims. Thus, like bombers and fighters, transport aircraft are just as much instruments of airpower as the more obvious combat types. In fact, because they can provide service in both combat and peacetime mission, they are perhaps even more powerful than their armed brethren. That is something to consider in these days of force reductions and expanding military missions.

Parachutes

When you look up at a parachute, it seems an absurdly simple concept. Yet, a parachute is as much an aerodynamic design as a stealth fighter. It lives and operates by the same physical laws in the same environment, and can suffer the same consequences in the event that those laws are violated. The idea of the parachute is hardly new. In the craft of the sailmaker, we can see that men had mastered the art of making strong and light fabric structures centuries ago. Thus, it is amazing that even today, such a simple idea as the parachute is at the core of technologies that make airborne warfare possible now and into the 21 st century. Nevertheless, the first man to imagine a parachute was apparently that prolific Italian genius Leonardo da Vinci (1452–1519). In a manuscript dated about 1480, there is a sketch of a man dangling from a pyramid-shaped structure. An enigmatic caption says:

… if a man has a tent of linen, with all the openings sealed up, he will be able to throw himself down from a great height without injury…

The canopy depicted in da Vinci’s drawing is too small, and the shape would have made it terribly unstable, but it might have worked. There is no evidence Leonardo ever tested his device, or even experimented with models. In spite of this, the basic concept was on the proverbial drawing board, just waiting for someone to do something with it.

Much of the technology that eventually led to the development of modern parachutes is derived from the construction of balloons. Early on, much balloon activity was centered in France. Benjamin Franklin (1706–1790) observed some of these flights while American ambassador to France, and quickly grasped the military implications of the new technology. From his observations of these flights came the quote at the beginning of this chapter. Ballooning never did emerge as a serious military force, but did encourage the development of the parachute. First as a daredevil spectacle, and later as a practical safety measure. Interestingly, prior to the first flights by heavier- than-air craft in the early 1900s, manned parachute jumps were being regularly made from moored balloons. The earliest military parachutists were balloon observers on both sides of the Western Front during World War I. These artillery spotters, in wicker baskets dangling from flammable hydrogen balloons, were terribly vulnerable to machine-gun fire from roving enemy aircraft. So the observers were equipped with crude parachutes and trained to bail out whenever an attack was threatened.

Despite parachutes being well developed and fairly reliable, few tactical aviators of the Great War ever used them. Early pursuit (fighter) aircraft of the day simply did not have the necessary lift to carry a man, the machine itself, guns, ammunition, a parachute, and other safety equipment. By 1918, though, the German Air Force had realized that parachutes could save the lives of irreplaceable and scarce veteran pilots, and began to issue them. None of the Allied air forces ever gave parachutes to tactical aviators.

A conceptual view of Leonardo da Vinci’s parachute design. OFFICIAL U.S. ARMY PHOTO

The inter-war years were a time of slow and quiet development in parachute technology. By the opening of World War II, the state of the art in parachute development was based upon the labor of the industrious silkworm. This may seem odd in light of the then-recent development (in the 1930s) of such synthetic fibers as nylon by the DuPont Corporation. However, the first applications of nylon were limited to making household items like toothbrushes and women’s stockings. Thus, the many potential benefits of synthetic fibers to airborne warfare were to be denied until after World War II. Virtually every parachute used by airmen and paratroopers in that war was made from that most comfortable of fabrics: silk. Silk has many desirable qualities when used in parachutes. These include light weight, an extremely dense thread count (the number of fibers per inch when woven), a favorable porosity to air, and great tensile strength when woven into fabric and lines. Given a careful cycle of packing and cleaning, the World War II-era parachute could be used several dozen times with confidence.

The personnel parachutes used in World War II by most nations were fairly similar in design. Most utilized a circular canopy or shroud of woven silk cloth. Around the base of the canopy was a fabric support base called a skirt, from which the support or shroud lines hung. Usually the paratrooper would be held by a special harness, designed to spread the shock and loads of the parachute opening over the body. The harness was attached to a set of thick fabric supports called risers, which fed up to shroud lines.

The basic design of most non-steerable parachutes has changed little over the last six decades. A circular canopy chute will, once inflated, essentially fall in a straight and vertical line. Notwithstanding the effects of cross- winds, this means that if a stick (or line) of paratroops is dropped at regular intervals behind an aircraft, they will be spaced fairly evenly as they descend. Using circular parachutes also minimizes the chances of a midair collision between two or more paratroopers trying to maneuver. This is the reason why today, in an era when sport parachutists (“sky divers”) almost always use square parafoil parachutes which are steerable, the older-design circular models are always used in mass airdrops.

When packed, the parachute is attached to a tray which is mounted on the back of the paratrooper and attached to the harness. Around the tray are a series of overlapping fabric panels, which form a protective bag to keep the chute from being snagged or damaged prior to opening. When folded over, the bag flaps are secured with rubber bands and light cords (much like shoestrings). These are designed to break or fall away when the parachute is deployed, and must be replaced prior to each jump. As for the parachute itself, the actual deployment is handled by a long cord (called a static line) attached to the drop aircraft. When the jumpers exit the door of the airplane,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×